

Data Science Using Oracle Data Miner and Oracle R Enterprise

Transform Your Business Systems into an Analytical Powerhouse

Sibanjan Das

Data Science Using Oracle Data Miner and Oracle R Enterprise

Transform Your Business Systems into an Analytical Powerhouse

Sibanjan Das

Apress[®]

Data Science Using Oracle Data Miner and Oracle R Enterprise

Sibanjan Das Pune, Maharashtra, India

ISBN-13 (pbk): 978-1-4842-2613-1 10.1007/978-1-4842-2614-8 ISBN-13 (electronic): 978-1-4842-2614-8

Copyright © 2016 by Sibanjan Das

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr Lead Editor: Celestin Suresh John Technical Reviewer: Ajit Jaokar Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing Coordinating Editor: Prachi Mehta Copy Editor: Deanna Hegle Compositor: SPi Global Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at www.apress.com. For detailed information about how to locate your book's source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

I dedicate this book

To my parents, grandparents, sisters, brothers, and brothers-in-law who motivated me to do what I always wanted to do

To my Wife and six-month old son Sachit for their love and care

To my mentors and Coaches Karthik Krishna Jonnalagadha, John Kopchak, Prabir Sen, Bibhudatta Ghadei, Harishchandra Rakh, and Nirmal Babu who has enriched my life with guidance and lessons that help me to be a better technocrat and person every day.

Contents at a Glance

About the Author	xiii
About the Technical Reviewer	xv
Acknowledgments	xvii
Introduction	xix
Chapter 1: Getting Started With Oracle Advanced Analytics	1
Chapter 2: Installation and Hello World	35
Chapter 3: Clustering Methods	75
Chapter 4: Association Rules	117
Chapter 5: Regression Analysis	147
Chapter 6: Classification Methods	189
Chapter 7: Advanced Topics	239
Chapter 8: Solutions Deployment	267
Index	285

Contents

About the Author	xiii
About the Technical Reviewer	xv
Acknowledgments	xvii
Introduction	xix
Chapter 1: Getting Started With Oracle Advanced Analy	/tics 1
Data Science	2
Business Understanding	3
Data Understanding	3
Data Preparation	3
Modeling	3
Evaluation	3
Deployment	3
Machine Learning	4
Supervised Learning	5
Unsupervised Learning	5
Getting Started with Oracle Advanced Analytics	6
Oracle Data Miner	8
R Technologies in Oracle	15
Oracle R Enterprise	15
Advantages of using Oracle R Enterprise	17
Analytical SQL and PLSQL Functions	
Package DBMS_STATS_FUNC	
SQL Functions	22
Summary	33

Chapter 2: Installation and Hello World	35
Booting Up Oracle Data Miner	36
Installation Prerequisites	36
Installation	36
Welcome to the World—Oracle Data Miner	48
SQL Developer Components for ODM	54
ODM Data Dictionary	59
Boot Up Oracle R Enterprise	59
Prerequisites	60
Oracle R Distribution	60
Oracle R Enterprise Server Installation	65
Oracle R Enterprise Client Installation	67
Install Supporting Packages for the ORE Client	70
Welcome to the World of Oracle R Enterprise	71
ORE Data Dictionary	73
Summary	74
Chapter 3: Clustering Methods	75
Clustering Approaches	76
The <i>k</i> -means Algorithm	77
k-means in Oracle Advanced Analytics	80
Clustering Rules Evaluation Metrics	81
Parameters to Tune <i>k</i> -means Clustering	81
Creating a Cluster Model in Oracle Advanced Analytics	82
Clustering using SQL and PLSQL	83
Case Study—Customer Segmentation	
Business understanding	94
Data understanding	94

RFM Segmentation—Data Preparation95
RFM Segmentation—DATA Modeling97
Need-Based Segmentation—Data Preparation100
Need-Based Segmentation—Data Modeling106
Result Evaluation
Deployment—Storing the Results Back to the Database
Assigning Segments to New Customers114
Summary 115
Chapter 4: Association Rules 117
Introduction to Association Rules118
Terminologies Associated with Association Rules
Working of an Apriori Algorithm120
Identify Interesting Rules 122
Algorithm Settings 123
Model Settings 123
Association Rules Using SQL and PLSQL 124
Creating the Association Rules Model Using Oracle R Enterprise 127
Creating the Association Model Using SQL Developer
Case Study—Market Basket Analysis134
Business Understanding135
Data Understanding135
Data Preparation136
Data Modeling136
High-Level Technical Overview137
Execution
Summary 145

CONTENTS

Chapter 5: Regression Analysis	147
Understanding Relationships	
Regression Analysis	151
Working of OLS Regression	152
Assumptions of OLS	153
OLS Regression in Oracle Advanced Analytics	154
GLM Regression	160
Ridge Regression	161
Parameters to Tune the GLM Model	161
GLM and Ridge Regression in Oracle Advanced Analytics	162
GLM Regression Using SQL and PLSQL	
Creating GLM Regression Using Oracle R Enterprise	
Creating GLM and Ridge Regression from SQL Developer	168
Guidelines for Regression Modeling	174
Case Study: Sales Forecasting	175
Business Understanding	176
Data Understanding	176
Data Preparation	177
Data Modeling	179
Summary	
Chapter 6: Classification Methods	189
Overview of Classification Techniques	190
Logistic Regression	190
Naïve Bayes	193
Creating a Naïve Bayes Model Using SQL and PLSQL	
Creating a Naïve Bayes Classifier Using Oracle R Enterprise	198
Assessing the Model Quality for Classifiers	201

Decision Trees	203
Entropy and Information Gain	204
Information Gain	205
Pruning Methods/Early Stopping Criteria for Decision Trees	206
Parameters to Tune a Decision Tree Model	207
Decision Tree Modeling Using SQL and PLSQL	
Decision Tree Modeling Using Oracle R Enterprise	210
SVM	211
Parameters to Tune the SVM Model	214
SVM Using SQL and PLSQL	215
SVM Using Oracle R Enterprise	218
A Few Other Important PLSQL APIs for Classifiers	219
Choosing a Classifier	221
Case Study: Customer Churn Prediction	222
Business Understanding	222
Data Understanding	222
Data Preparation	223
Data Modeling	227
Selecting the Best Classifier	229
Results Interpretation	236
Summary	237
Chapter 7: Advanced Topics	239
Overview of Neural Networks	240
Function of a Hidden Layer Neuron	241
Parameters for Neural Network	242
Neural Network Using Oracle Advanced Analytics	

Overview of Anomaly Detection	247
One-Class SVM	248
Anomaly Detection Using Oracle Advanced Analytics	248
Overview of Predictive Analytics in Oracle Advanced Analytics	251
Predictive Analytics Using SQL Developer GUI	251
DBMS_PREDICTIVE_ANALYTICS	255
EXPLAIN	255
PREDICT	256
PROFILE	258
Overview of Product Recommendation Engine	259
Product Recommendation Engine Using Oracle Advanced Analyti	cs 260
Overview of Random Forest	262
Random Forest Using Oracle Advanced Analytics	263
Summary	265
Chapter 8: Solutions Deployment	267
Export and Import an ODM Workflow	267
Deploy Option for Data Miner Workflows in SQL Developer	273
Import and Export Data Mining Models	277
EXPORT_MODEL	278
IMPORT_MODEL	279
Renaming Models	
Drop Models	
Predictive Model Markup Language (PMML)	281
Importing and Exporting PMML models into Oracle Advanced Analytics	
Summary	283
Index	285

About the Author

Sibanjan Das is a Business Analytics and Data Science consultant. He has over six years of experience in the IT industry working on enterprise resource planning (ERP) systems, implementing predictive analytics solutions in business systems and Internet of Things (IoT). An enthusiastic and passionate professional about technology and innovation, he has had the passion for wrangling with data from the early days of his career. He also enjoys reading, writing, and networking. His writings have appeared in various Analytics Magazines, and Klout (http://klout.com) has rated him among the top 2% professionals in the world talking about Artificial Intelligence, Machine Learning, Data Science, and IoT.

Sibanjan holds a Masters in IT degree with a major in Business Analytics from Singapore Management University, Singapore, and is a Computer Science Engineering graduate from Institute of Technical Education and Research, India. He is a Six Sigma Green Belt from the Institute of Industrial Engineers and also holds several industry certifications such as OCA, OCP, CSCMS, and ITIL V3.

About the Technical Reviewer

Ajit Jaokar is the Director of the AI/Deep Learning labs for Future cities at UPM (Universidad Politécnica de Madrid). Ajit's work spans research, entrepreneurship, and academia relating to IoT, predictive analytics, and mobility. His current research focus is on applying data science algorithms to IoT applications. This research underpins his teaching at Oxford University (Data Science for IoT) and the "City Sciences" program at UPM. Ajit lives in London and is a British citizen.

He has been nominated to the World Economic Forum's "Future of the Internet" council, board of Connected Liverpool (Smart city), and World Smart Capital program (Amsterdam). Ajit moderates/chairs

Oxford University's Next generation mobile applications panel. Ajit has been involved in IoT-based roles for the webinos project (Seventh Framework Program [Fp7]) and has spoken at MobileWorld Congress, CTIA (The Wireless Association), CEBIT, Web20 expo, European Parliament, Stanford University, MIT Sloan, Fraunhofer Institute for Open Communication Systems (FOKUS), and the University of St. Gallen. He has been involved in transatlantic technology policy discussions. Ajit is passionate about teaching Data Science to young people through Space Exploration working with Ardusat.

Acknowledgments

I wish to express my gratitude to each and every one who has contributed to my career and success. This is my first attempt at writing a book. I am equally excited and wish that everyone who reads this book finds it worthy. The list of people who influence me is long. Keeping the length of text in mind, I would like to thank a few of them who have made a lot of difference to me and in my career.

I am grateful to my colleagues and friends in Oracle and Zensar for their encouragement and support. Thank you Abhijit, Pravin, Dinesh, Sandhya, Anand, Sanjay, Eulalio, Sanjiv, Rajesh G., Team Toshiba, and Team Co-Development for believing in me and providing me an opportunity to work with you all.

Personal thanks to Pradeep, Sangeetha, Karthik, Charlie, Boriana, Ari, Vinayak, Mohan, Vijay, Puskala, Swathi, Rajesh, Naresh, and VoF Team for their helping hand and constant support for my work during my tenure at Oracle. I learned a lot from you all. The experience gained from working alongside you has provided the grist for this book.

Huge thanks to my friends and professors at Singapore Management University— Prof. Jing Jiang, Dr. Kam Tin Seong, Prof. Prabir Sen, Venkata Narayanan, Koo Ping Shung, and Murphy Choy—for sharing their knowledge and experience with me. Thank you Ankit, Mudit, Ai Bowen, Mugdha ,Edwin, Shantanu, Upkar, and Maruthi for being my partners in projects and crime.

Many thanks to my friends Sarat, Itishree, Vikas Kumar, Biswajit, Hamid, and Trojan Horses for your constant support, sharing drinks, and lending your ears to me when I needed it most.

Final thanks to the Apress team who worked behind the scenes to create a book out of my drafts of thoughts. Thank you, Suresh John Celestin, for reaching out to me to write the book. The book was made better by Apress Editors Prachi Metha, Ajit Jaokar, and Poonam Jain. Your comments and edits were valuable for the book.

Introduction

We are now in an era where consumer preferences are changing at lightning speed, social media is making the reviews transparent, and new competitors are appearing out of nowhere. Digitalization is starting to rule the world, and employee attrition has increased. To surf these new waves of business challenges, organizations are getting driven by technologies and deploying a variety of new enterprise applications like ERP Systems, CRM (customer relationship management) tools, Big Data, and Cloud-based solutions. Also, organizations are relying on data science technologies and algorithms to be intelligent and proactive. Data science, which is a relatively new term in the Business and IT industry, has hit the main stream for investment in the last few years. This is because it provides organizations the opportunity to gain insights about their business and drive proactive planning. Although getting some information or insights out of the data has been there since a decade ago, proactive planning is relatively new. Organizations are now able to predict what might happen in the future, which helps them to formulate strategies and plan in advance for the possible roadblocks. Statistical models and quantitative analysis sits at the core of data science and measures past performance to predict the future.

But this is not the end of the story. To keep up with everyone's expectations, organizations need to attend the customers as soon as they need service, retain employees before they resign, or identify frauds before they happen. They also have to be operationally efficient and at the same time cost-effective. This requires the ability to apply analytical insights to business operations at the right time. The only way to stay ahead of everyone is to be agile at data-driven, decision-making capabilities. This is possible when algorithms are brought near to the origin of data such as databases and data science routines are automated and integrated to business process workflows.

Data science involves a wide array of technologies and statistical algorithms. This makes it difficult to automate each and every aspect of it. However, there are some areas in data science that can be automated using scripts and workflows.

At a high level, we can classify data science automation into the following categories:

Repetitive tasks automation: Repetitive tasks are those that have to be done every time while building models. Data extraction, data cleaning, and basic data transformations such as imputing null values and algorithm-specific transformations are some tasks that fall into this category. These are to be done even for the same set of data every time. Automating these tasks would take some of the burdens off of a data scientist so they can concentrate more on solving business problems.

Automated statistician: This is an area of data science automation where statistical routines and machine learning are automated. The system executes the best algorithm based on the provided data set. It hides the intricacies and mathematical complexity of algorithms from the user. The user needs to provide automated statisticians with data.

INTRODUCTION

It understands the data, creates different mathematical models, and returns the result based on the model that best explains the data. It is still at a nascent stage and an active area of research.

Problem-specific automation: This involves automating a data science process based on the problem at hand. This eases a user of carrying out the same activity for a specific problem several times. For example, the data scientist of an organization develops a model for predicting future sales of an organization. Based on an organization's requirement, this activity has to be carried out at different time frames, say monthly or quarterly. Each time, a wide array of tasks have to be performed, such as extracting the data, preprocessing it, creating statistical models, and returning the results back to the business operation's database. If this whole process is automated, it drives agile business decisions, better customer focus, and operationally efficient and managed resources.

The complexity of automation rises when we move up the pyramid of data science automation techniques as shown in Figure 1. An automated statistician sits at the top of complexity, as this requires the system to learn the input data patterns, find the best fit values, and self-optimize its parameters using several statistical and machine learning algorithms. This requires a generalization of various algorithm constraints and huge computing power. Problem-specific and repetitive-tasks automation are relatively easier to implement.

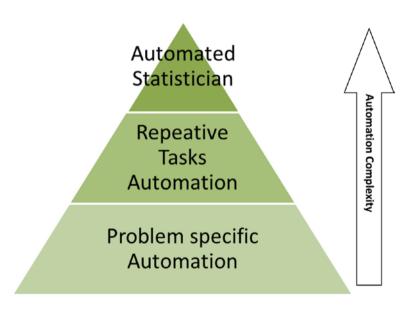


Figure 1. Data science automation pyramid

Oracle Advanced Analytics: Bringing Automation to Data Science

Oracle Advanced Analytics, an analytics product from Oracle, helps to address problemspecific automation and repetitive-tasks automation. It's got features like automated data preparation and workflow that integrate data science modules to business operations databases. It also has a feature known as predictive queries, one of the forms of automated statistics, for professionals with no statistics knowledge to be able to perform predictive analytics.

This book will help you learn about Oracle Advanced Analytics, focus on database embedded automation workflows for business use cases, and provide an overview on the most commonly used data science techniques for business applications. Rather than covering every detail of various machine learning algorithms, this book aims to give you a head start to drive automation and implement data science using Oracle Advanced Analytics. It also contains solutions to some practical data science problems that organizations need to embed to their business processes.

This book contains 8 chapters. Every chapter has various examples to demonstrate the capabilities of Oracle Advanced Analytics. In each chapter, I will outline some different statistical techniques, methods for automating different steps and implementing solutions. Toward the end of the book, you will have a good grasp and be able to perform in database automated analytics using Oracle Advanced Analytics technology stack.

The following is an overview of the contents for each chapter.

Chapter 1: Getting Started with Oracle Advanced Analytics

In this chapter, I will set the scene for you to know about data science, machine learning, and Oracle Advanced Analytics. I will introduce you to Oracle Data Miner and Oracle R Enterprise, which are a part of Oracle Advanced Analytics along with various PLSQL and ORE APIs that they offer for data mining and machine learning.

Chapter 2: Installation and Hello World

In this chapter, I will outline the steps to install Oracle Data Miner and Oracle R enterprise. I willalso demonstrate a "Hello World" workflow in SQL Developer to verify installation and get started with Oracle Advanced Analytics.

Chapter 3: Clustering Methods

In this chapter, you learn about different clustering methods available in Oracle Advanced Analytics stack. I will demonstrate an embedded workflow for RFM analysis and customer segmentation using some of the algorithms discussed.

Chapter 4: Association Rules

In this chapter, I discuss association rule mining in detail, followed by an example of market basket analysis embedded in an Organization's order management module to drive product recommendations.

Chapter 5: Regression Analysis

In this chapter, I brief you about regression techniques and their applications. This is followed by an example on predicting future sales for a superstore.

Chapter 6: Classification Methods

This chapter will help you learn about various classification options available in the Oracle Advanced Analytics stack. I demonstrate a classic example of predicting customer churn for an organization.

Chapter 7: Advanced Topics

In this chapter, I will brief you about ensemble methods, neural networks, and anomaly detection using Oracle Advanced Analytics.

Chapter 8: Solution Deployment

In this chapter, I demonstrate various methods to select the best model and deploy it to a production environment

CHAPTER 1

Getting Started With Oracle Advanced Analytics

In past few years, there has been a tremendous growth in unstructured as well as structured data, and they continue growing exponentially. Organizations are looking out for ways to derive value and make sense out of this data. They are looking for answers from the data that they have never asked before. To derive insights and make predictions from this data, they are using various statistical analytics tools such as R, Python, or SAS (Statistical Analysis System). However, integrating these analytical tools with business operation systems has some bottlenecks:

- There is a delay involved in moving data between systems.
- There is dependency on multiple resources and technologies to support and monitor this integration.
- Data quality has to be checked at every integration point.
- Integrating different systems costs time and money.
- Implementation of machine learning algorithms are resource intensive; and when the dataset is huge, it becomes more complicated.
- Open source tools like R are not very scalable when it comes to Oracle Enterprise implementations and cannot handle Big Data

This results in increasing costs and impacts the business. Since more than a decade ago, oracle database is recognized as one of the most popular, trusted, and widely used database systems by organizations. It's superior performance and security features has made it a reliable database system for managing large business operations. Oracle Advanced Analytics extends oracle database capabilities into an analytical platform

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-2614-8_1) contains supplementary material, which is available to authorized users.

to deliver insights from data. It leverages the strength of the database for parallelism, scalability, and security along with proprietary in-database implementations of commonly used predictive analytics machine learning techniques. It runs at the top of the oracle database and so does not need integration with the database.

In this chapter, I cover the following topics:

- Overview of Data Science and CRISP-DM (Cross-Industry Standard Process for Data Mining) Methodology
- Overview of machine learning and its application in various Industries
- Getting started with Oracle Advanced Analytics- Oracle Data Miner and Oracle R Enterprise
- Overview of some Analytical SQL (structured query language) and PLSQL (procedural language/SQL) functions that makes Oracle Advanced Analytics a powerful analytical engine

Data Science

Data Science involves a wide array of technologies, processes, and methodologies to get insights and value out of the data in whatever form, structure, and size it is. A data scientist demands various overlapping skill sets on mathematics and statistics, data mining, machine learning, Computer Programming, Database skills, and Business Domains. Along with that, visualization and presentation skills are also necessary to understand the data and present the information to people. In short, every data science activity hovers around "data," and mining data becomes one of the important skill sets that a data scientist possesses.

Data mining can be defined as the process to understand the business requirement, use statistical analysis and machine learning skills, extract useful information out of the data, and present it to the user. Like software engineering methodologies, there are also several methodologies such as CRSIP-DM and SEMMA (Sample Explore Modify Model Assess) to standardize a data mining project. These processes define the steps to systematically conduct data mining activities. I discuss CRISP-DM methodology, which is mostly followed as an industry-wide standard for data mining projects.

CRISP-DM consists of six phases as illustrated in Figure 1-1. It is a continuous process to improve data mining results after completion of each cycle from business understanding to deployment.

CHAPTER 1 🔲 GETTING STARTED WITH ORACLE ADVANCED ANALYTICS

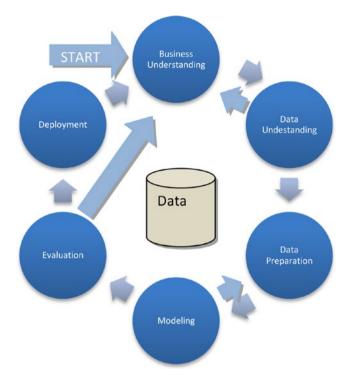


Figure 1-1. CRISP-DM methodology

Business Understanding

Business understanding involves comprehending the business requirements, assessing the goals, and determining the KPIs (key performance indicators), which are going to be affected and improved with the data mining project. If an organization wants to streamline their operations and have a goal to reduce costs associated with their inventory, the team needs to determine the associated KPIs such as cost of days in inventory, inventory turnover ratio, and stock outs ratio tied to the project. This would help them with better solution design and to monitor the success of a project.

Data Understanding

Once the business understanding is established, the data mining team has to validate whether data is sufficiently available and is of good quality to carry out the data mining tasks. The process includes initial data collection, data exploration, and data quality checks. Poor data leads to erroneous findings and is not helpful to business. Sometimes, it might misguide business and lead to poor decisions; so this step is critical, and data needs to be thoroughly examined.

Data Preparation

Data preparation is to preprocess the data to a suitable form for building models. Almost any data we encounter in a data science project is not ready to be modeled. Real-world data is often dirty and skewed, there is missing data, and sometimes it is noisy. It is therefore necessary to preprocess the data to make it clean and transformed so it's ready to be run through statistical algorithms. This is the most time-consuming step for any data mining project and consumes almost 60% to 80% of the total effort in a project. However, a simple model on clean data outperforms a complex model with dirty data.

Modeling

Modeling involves the use of statistical models to understand the pattern of data and derive insights out of it. The insights can be just visualization of some patterns or prediction of a future value. It is the most interesting part of the project and involves machine learning as one of its most important components. I discuss machine learning algorithms in the following sections and subsequent chapters.

Evaluation

Once a model is ready, it has to be evaluated to establish its correctness. It is a two-phase process. First, a model is evaluated for its statistical accuracy, that is, whether the statistical assumptions are correct and hold true for other unknown datasets. Second, a model is evaluated to see if it performs as per business requirements and if users truly get some insights out of it.

Deployment

Deployment involves applying and moving the model to business operations for their use. A data mining project is not successful until and unless the model result is used in real time by business. I discuss more about deployment in Chapter 8.

Machine Learning

In a previous section, I discussed machine learning as an important part of the modelling phase. Applying the correct machine learning algorithm is crucial for a data science project's success. We can define machine learning as algorithms that learn and gain experience from the data for identifying patterns to predict the future or to gain some useful information out of it. So if we want to predict the future sales of our organization, we can run the past historical sales data through a machine learning algorithm; and if it has successfully learned the pattern of sales, it will do better at predicting future sales.

Figure 1-2 is an illustration of a machine learning process. The attributes of the input data that goes into a machine learning algorithm is termed as predictors. A machine learning algorithm learns from the underlying data of these predictors and provides output results in a suitable form as per the type of algorithm used. Broadly, machine learning algorithms can be classified into two groups: supervised learning and unsupervised learning.

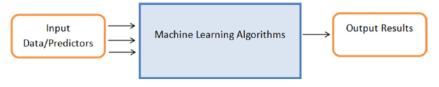


Figure 1-2. Illustration of a machine learning process

Supervised Learning

This group of algorithms works on labeled input datasets, which means they have a specified target or an outcome. The target attribute has some known historical results that can be a continuous numeric attribute, a binary attribute indicating yes/no decisions, or a multiclass attribute with more than two outcomes. Based on these target values, the supervised learning algorithm tries to identify a pattern, establish a relation between the predictors, and then use the derived formula to identify unknown target values from a new dataset. Suppose there is a business requirement to identify the customers who are going to churn in the near future. The input data supplied to the supervised learning algorithms would consider historical data with an indicator to annotate that the customer has or has not churned in the past. Based on this, the machine learning algorithm derives a relationship between predictors for this target value (Churn Yes/No). This formula is then used to predict a customer's churn who is still continuing with the organization. The results provide the organization reasons to take preventive measures to retain customers who are at high risk of leaving. Examples of supervised algorithms include linear regression, logistic regression, Support Vector Machines (SVM), and decision trees. I discuss more about these algorithms in Chapters 5 and 6.

Unsupervised Learning

This group of algorithms works on input data with an unlabeled dataset, that is, data having no target values. The dataset doesn't have any labels and the algorithms identify patterns by deducing structures and the relations of the predictors in the input data. Suppose an organization wants to segment their existing customers for launching a new promotion: they can use unsupervised learning algorithms to identify common patterns across the customer base and accordingly design their promotion activity. Examples of unsupervised algorithms include clustering and association rule mining. I discuss more about these algorithms in Chapters 3 and 4.

Table 1.1 shows some of the business analytics use cases that commonly employ statistical and machine learning algorithms.

Technique	Purpose	Example Scenario
Anomaly Detection	To identify outliers or frauds	Identify fraudulent credit card transactions
Association Rule Analysis	To find frequent patterns in a dataset	Understanding what products go together frequently into a market basket for customers
Attribute Importance	To identify attributes that affect an outcome	Identify the most important factors that influence a purchasing decision
Classification	To predict or categorize new data based on a set of categorized historical dataset; the labeled dataset that goes in to these algorithms has a binary or multiclass target value	Predict the category of a new product that arrives at a retail store
Clustering	Grouping individuals with similar characteristics	Group together customers with similar purchasing patterns
Regression	Predict an outcome based on past historical data; the labeled dataset has a continuous target variable	Predict the sales of a product

Table 1-1. Commonly Used Business Analytics Use Cases

Getting Started with Oracle Advanced Analytics

Oracle Advanced Analytics helps organizations to leverage data mining from both structured and unstructured data in the database kernel without any overhead on the client systems or any external integration with other predictive analytics tools. The following are some of the advantages of Oracle's Advanced Analytics platform:

Eliminate the data movement: The data mining algorithms are executed in the database server itself. This eliminates the need to transfer the data to some other server or tools. This also ensures better data quality and minimum latency in data movement.

Deliver security: Data resides in the oracle database and inherits the most trusted security features of the oracle database.

Ease of data preparation: Data preparation, which is the most difficult and time-consuming part of a project, is eased by Oracle. Oracle Advanced Analytics provides automatic data preparation functionality and easy to use APIs (application program interfaces) for custom transformations to reduce the burden for preparing data. This improves the agility of implementing a data science project.

Tight integration to Oracle's technology stack: Being an in-database advanced analytics engine, it is easier to tie the results back to a business operations database quickly and in real time. The results and the models can be invoked by SQL queries, making it quite flexible to use. Oracle Advanced Analytics has already powered analytics capabilities to Oracle's ERP (enterprise resource planning) and its Business Intelligence tools.

Model deployment: Model deployment into a business operations database is simplified and faster, as its data mining programs are coded in SQL or PLSQL, the languages understood by the oracle database. It also supports Predictive Model Markup Language, an open source standard for porting statistical models, which makes it flexible enough to be used in deployment or in any other analytics server.

High data availability and scalability: As the mining algorithm sits at the source of data, correct and legitimate data is available to perform mining activities. In-database and distributed parallel implementation of machine learning algorithms makes Oracle Advanced Analytics platform highly scalable for Big Data.

Flexible interface options: Oracle Advanced Analytics has interfaces to multiple programming languages. It provides easy to use PLSQL, R, and Java APIs for data miners to work with the language they are comfortable with.

Predictive Queries: For users who don't understand mining algorithms, Oracle Advanced Analytics has few APIs that can create models by themselves from the input data and return results. All mining steps are handled by the API itself. This can also be used by data scientists to quickly verify any insights found out of the data.

CHAPTER 1 GETTING STARTED WITH ORACLE ADVANCED ANALYTICS

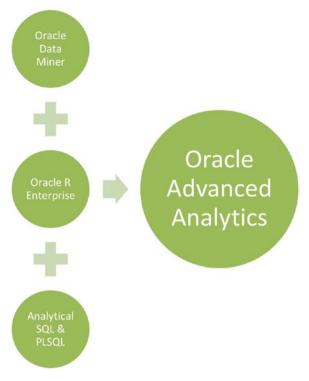


Figure 1-3. Oracle Advanced Analytics technology stack

Oracle Advanced Analytics comes up with a powerful combination of analytical SQL and PLSQL packages: Oracle Data Miner and Oracle R Enterprise. Oracle Data Miner is a flagship product from Oracle that provides in-database execution of statistical algorithms to make predictions and discover insights. However, it is packaged with a limited number of algorithms. If we want to execute new advanced algorithms in Oracle Data Miner, it requires coding those algorithms in PLSQL, and it is time consuming. This reduces the flexibility of Oracle Data Miner to implement advanced algorithms quickly. To overcome this challenge, Oracle engineered open source R to Oracle R Enterprise. This engineered feature complemented the limitations of Oracle Data Miner and also made open source R scalable and enterprise ready for Big Data. This also helped Oracle Advanced Analytics to tap into the resources of the huge contributions of the latest libraries by the open source R community. We dive deep into these three components of Oracle Advanced Analytics platform in the following sections.

Oracle Data Miner

In 1999, Oracle purchased Darwin, a data mining product from Thinking Machines. It continued to distribute Darwin while preparing to move these algorithms into the oracle database. In 2002, Oracle Data miner was introduced as Oracle Data Mining 9iR2. Since then, it has gone through many upgrades, changes in its features, and it has introduced new algorithms as well. The current release is Oracle Data Mining 12.1 with many good features I continue discussing in the following sections.

Architecture: Figure 1-4 depicts the architecture for Oracle Data Miner. As seen in Figure 1-4, it has two components:

An enterprise server: Oracle Data Miner and its repository are installed along with the oracle database. If not, it can be manually turned on in the database.

GUI (graphical user interface) Client: The Data Miner tab in the SQL Developer is the GUI client for Oracle Data Miner. It is used to visualize the data through various graphs and create data mining workflows. This user interface comes in handy when trying out Oracle Data Miner's features.

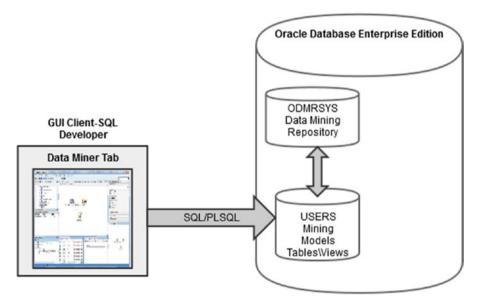


Figure 1-4. Architecture for Oracle Data Miner

Oracle Data Miner provides a comprehensive suite of data mining PLSQL packages for implementing data science solutions. Table 1-2 lists, and the following sections brief, three important packages in Oracle Data Miner that provide an array of functions and procedures to drive data science automation and implementations in an organization.

Table 1-2. Oracle Data Miner Packages

Data Mining Activity	PLSQL Package	
Data preprocessing and transformations	DBMS_DATA_MINING_TRANSFORMATION	
Creating, testing, and applying models	DBMS_DATA_MINING	
Creating models on the fly	DBMS_PREDICTIVE_ANALYTICS	

DBMS = database management system.

DBMS_DATA_MINING_TRANSFORMATION for data preprocessing

DBMS_DATA_MINING_TRANSFORMATION package provides many routines that can be embedded into a data mining project to deal with data problems such as imputing missing values, dealing with outliers, and transforming the data to a suitable form. Using this package, we can automate the data preprocessing step to a maximum extent and help reduce a data scientist's burden to do this task repeatedly for a project.

Table 1-3 lists the routines present in DBMS_DATA_MINING_TRANSFORMATION. I use many of these routines as a part of my solutions for use cases that I will discuss in subsequent chapters.

Preprocessing Type	Method	Procedure
Outlier Treatment	Winsorizing	INSERT_CLIP_WINSOR_TAIL
	Trimming (Clipping)	INSERT_CLIP_TRIM_TAIL Procedure
Missing Value Treatment	Replace missing numerical values with the mean	INSERT_MISS_NUM_MEAN Procedure
	Replace missing categorical values with the mode	INSERT_MISS_CAT_MODE Procedure
Linear Normalization	Min-Max Normalization	INSERT_NORM_LIN_MINMAX Procedure
	Scale Normalization	INSERT_NORM_LIN_SCALE Procedure
	Z-Score Normalization	INSERT_NORM_LIN_ZSCORE Procedure
Binning	Supervised Binning	INSERT_BIN_SUPER Procedure
	Top N Frequency Binning	INSERT_BIN_CAT_FREQ Procedure
	Equi-Width Numerical Binning	INSERT_BIN_NUM_EQWIDTH Procedure
	Quantile Numerical Binning	INSERT_BIN_NUM_QTILE Procedure

Table 1-3. List of Data Preprocessing Routines in Oracle Data Miner

Let us take a pause here to understand the purpose for some of these preprocessing methods:

Outlier Treatment: Outliers are values that lie far away from other variables and have some unusual behavior. Presence of outliers may distort the overall distribution of data and give erroneous model results. Based on the number of outliers, they can be either dropped from the analysis or treated accordingly so their presence doesn't affect the overall model results.

Winsorizing: Winsorizing is the process to replace extreme values with less extreme values. It orders the non-null values in numeric columns, computes the tail, values and then replaces the tail values by the specified parameter.

Trimming: Trimming is same as winsorizing except the tail values are just clipped out and set to NULL.

Linear Normalization: Linear Normalization is a process of scaling the variables into a specified range of 0 to 1. It is important to scale the variables when they have different units of measurement to bring them to the same magnitude for comparisons and distance calculations.

Min-Max normalization: In Min-Max normalization, the actual value of a variable (V) is subtracted by its minimum available value (minv) over the difference of its maximum (maxv) and minimum values.

$$V' = \frac{\left(V - Min_V\right)}{Max_V - Min_V}$$

Scale normalization: In this type of normalization, the actual value is divided by the maximum of the absolute maximum value and absolute minimum value.

$$V' = \frac{V}{\max\left(abs\left(Max_{V} - Min_{V}\right)\right)}$$

Z-score normalization: Here the actual value (V) of a variable is subtracted by its mean value (Meanv) divided by its standard deviation (S.D.,)

$$V' = \frac{V - Mean_V}{S.D._V}$$

Binning: Binning is a process of grouping values into different buckets or bins. Binning forms an important tool in a data science toolbox, as it helps to discretize continuous numeric values or reduce the number of categorical values.

> *Supervised binning*: Supervised binning assigns the bins in a predictor by deriving bin boundaries from decision tree algorithms. It is an intelligent form of binning in which the relationship between the predictor and a target is used to decide the bin values. Values having more predictive power in a predictor are assigned higher bin numbers than values with less or no predictive power. This binning method is suitable to be used in the case of supervised models such as regression or classifications and can be applied on both character and numeric attributes.

Equi-Width Numerical binning: The equi-width bins are formed by dividing the data into k intervals of equal size. The value of "K" is specified by user. This type of binning is only applicable to numerical attributes.

Quantile Numerical binning: Quantile numerical binning is applicable to numerical attributes. Here binning is done by assigning the same number of observations to each bin.

Top N Frequency binning: Top N frequency binning is only applicable to categorical attributes. First, the frequency of each attribute is calculated. Then the top N attributes are assigned individual bin number and the rest of the attributes fall into the (N+1)th bin. Here, N is a user specified number.

Along with these data preprocessing activities, every statistical algorithm requires input data to be in a suitable form to be consumed by it. For example, SVM requires input data to be normalized, whereas Naïve Bayes performs well with discrete data. Oracle has provided automatic data preparation (ADP) functionality in Oracle Data Miner to perform these types of data transformations automatically as required by different algorithms. Table 1-4 lists the data mining techniques that are supported by ADP.

Algorithm	Is ADP Supported?
Apriori	No. ADP has no effect on apriori algorithms. Data should be as per apriori algorithm's requirement. We study in depth about Apriori algorithms in Chapter 4.
Minimum Description Length	Yes. Supervised binning is used to bin all attributes.
Generalized Linear Model	Yes. Numerical attributes are normalized.
Decision Tress	No. A decision tree does its data preparation internally.
Naïve Bayes	Yes. Supervised binning is used to bin all attributes.
<i>k</i> -Means	Yes. Outlier sensitive normalization is used to normalize numerical attributes.
Expectation Maximization	Yes. Outlier sensitive normalization is used to normalize numerical attributes.
O-Clusters	Yes. Equi-width binning is used to bin numerical attributes.
Principal Component Analysis	Yes. Outlier sensitive normalization is used to normalize numerical attributes.
Non-Negative Matrix Factorization	Yes. Numerical attributes are normalized.
Singular Value Decomposition	Yes. Outlier sensitive normalization is used to normalize numerical attributes
Support Vector Machine	Yes. Min-max normalization is used to normalize numerical attributes.

Table 1-4. Data Mining Techniques That Are Supported by ADP

O-Clusters = Orthogonal Partitioning Clustering.

DBMS_DATA_MINING for creating, testing, and applying models

DBMS_DATA_MINING package provides an interface to Oracle Data Miner to build a model, test it, and then apply it to a new dataset. It has methods for both supervised and unsupervised mining machine learning algorithms to create models.

The comprehensive suite of data mining algorithms supported by DBMS_DATA_ MINING is as listed in Table 1-5:

Technique	Algorithm	PLSQL Routine in DBMS_DATA_MINING
Anomaly Detection	One class Support Vector Machine	ALGO_SUPPORT_ VECTOR_MACHINES
Association Rule Analysis	Apriori	ALGO_APRIORI_ ASSOCIATION_RULES
Attribute Importance	Minimum Description Length	ALGO_AI_MDL
Classification	Generalized Linear Model	ALGO_GENERALIZED_ LINEAR_MODEL
	Decision Trees	ALGO_DECISION_TREE
	Naïve Bayes	ALGO_NAIVE_BAYES
Clustering	k-Means	ALGO_KMEANS
	Expectation Maximization	ALGO_EXPECTATION_ MAXIMIZATION
	O-Clusters	ALGO_O_CLUSTERS
Feature Extraction	Principal Component Analysis	ALGO_SINGULAR_VALUE_ DECOMP
	Non-Negative Matrix Factorization	ALGO_NONNEGATIVE_ MATRIX_FACTOR
	Singular Value Decomposition	ALGO_SINGULAR_VALUE_ DECOMP
Regression Algorithms	Generalized Linear Model	ALGO_GENERALIZED_ LINEAR_MODEL
	Support Vector Machine	ALGO_SUPPORT_ VECTOR_MACHINES

 Table 1-5.
 Data Mining Algorithms in Oracle Data Miner

O-Clusters = Orthogonal Partitioning Clustering.

Note I will discuss these algorithms in detail in the following chapters.

DBMS_PREDICTIVE_ANALYTICS to create models on the fly

DBMS_PREDICTIVE_ANALYTICS provides methods to create models on the fly from input data and provide the results. This functionality of Oracle Data Miner is targeted toward users with no statistical modelling or programming skills. We can think it as a form of automated statistics in which a user need not be aware of the mathematical details for building a model. The package internally handles what model to choose when and returns back the output result after necessary computations. Table 1-6 lists the three methods of the DBMS_PREDICTIVE_ANALYTICS package along with their utility.

Table 1-6. PLSQL Routines in DBMS_PREDICTIVE_ANALYTICS Package

PLSQL Routine	Purpose
PREDICT	Automatically predicts the outcome from the input data. Users need not be aware of the model building steps or prediction algorithms.
EXPLAIN	Returns the important attributes along with their ranks for a specified target value from the input data.
PROFILE	Generate rules for insights from input data.

R Technologies in Oracle

In 2011, Oracle adopted R technologies to form a part of its Advanced Analytics offerings. It provides R integration through four key technologies:

> **Oracle R Distribution**: This is Oracle's distribution for open source R integration. It is available as a free download from the OTN (Oracle Technology Network) web site. This distribution has many performance improvements done by Oracle on open source distribution of R.

ROracle: This is an open source package to interface R with the oracle database. It is publicly available in CRAN (Comprehensive R Archive Network) and is maintained by Oracle.

Oracle R connector for Hadoop: It provides an interface to access HDFS (Hadoop Distributed File System), work with Hive tables, and execute map reduce functions from R. It can be downloaded free from the OTN web site and also forms a part of Oracle Big Data Appliance (BDA).

Oracle R Enterprise: This is an important component of Oracle Advanced Analytics offerings and makes open source R ready for enterprises. In the following section, I discuss at a greater depth its technical components and the advantages that it offers.

Oracle R Enterprise

Oracle R Enterprise is an enterprise version of the highly preferred open source statistical language R. It runs on the database server and integrates R with the oracle database. Traditional R provides a wide variety of machine learning and statistical algorithms, which make it a favorite tool for the data scientist to work on. However, traditional R

doesn't scale well with a large dataset. It is a client-based tool that sits at user's machine. This makes data processing slower and not suitable for Big Data. Oracle engineered open source R to Oracle R Enterprise that overcomes the challenges present with open source R. However, using Oracle R Enterprise data, scientists can still continue enjoying the advantages of being a part of large open source R community.

Using Oracle R Enterprise, data scientists can develop scripts/programs that are using R language, execute them, and build models in the database server. The data still remains in the oracle database, and these scripts utilize the ability of database to handle and process millions of records and automate scripts.

Figure 1-5 shows an architectural overview of Oracle R Enterprise. This can be classified into a three-layer component architecture where the

Ist Layer is Oracle R distribution or open source R on the user's laptop or desktop.

2nd Layer is the oracle database where SQL generated through the transparency layer is executed. The transparency layer maps R data types to oracle database objects and generates SQL for the executed R expressions.

3rd Layer is spawned R engines of Oracle R Enterprise to execute on the database server under the control of oracle database. Oracle R Enterprise contains statistical libraries that reside at the database server and are executed in the database itself. This embedded execution enables data and task parallelism, XML (extensible markup language), or image extractions and SQL access to R.

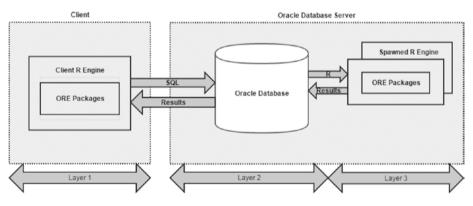


Figure 1-5. Architecture for Oracle R Enterprise

ORE also provides a data store to store and retrieve temporary R objects in the database server. If you are working on R on your laptop, you can store the objects in ORE database store. It can be retrieved later to work on. This makes it easy to manage the variety of R objects and makes it independent of your client system.

Advantages of using Oracle R Enterprise

- Ability to execute R code in a database server
- Eliminates the data movement from database to R and vice versa
- Enables SQL access to R
- Can be packaged with PLSQL codes
- Execution can be automated
- Model results can be retrieved as XML files, which can be ported across applications

As we can see from Figure 1-6, Oracle R Enterprise consists of various ORE packages that are installed at both the client and database server. Table 1-7 describes the purpose of these packages. Many packages are reengineered from open source R packages to make them database compatible, while some are Oracle's proprietary packages made to fit it into its advanced analytics offerings.

ORE Package	Utility	
OREbase	The base package for ORE. Contains methods to convert an object to an ORE object, create constants, database connection functions, and many more	
OREstats	Provide methods for statistical tests	
OREgraphics	Provide methods for visualization through graphs and plot	
OREeda	An exploratory data analysis package that provides various methods for univariate analysis (analyzing a single variable at a time), calculating correlations, summarizing data, ranking values, and many more	
OREdm	Exposes proprietary Oracle Data Mining algorithms; this forms a base to integrate the Oracle Data Miner's algorithms to Oracle R Enterprise	
OREpredict	Contains functions for generating and scoring model predictions for data present in the oracle database using R models	
ORExml	Supports XML translation between R and the oracle database	

Table 1-7. Routines in the ORE Package

Apart from these packages, Oracle R Enterprise supports various other open source R packages such as arules, Cairo, DBI, png (Portable Network Graphics), ROracle, statmod, and randomforest.

The ROI (return on investment) of using Oracle R Enterprise lies in its embedded execution of R scripts in the oracle database. It provides two interfaces for this embedded execution: one for users who are comfortable with R and the second one for oracle database users. The variant of interface functions provided in ORE are described following:

CHAPTER 1 🔲 GETTING STARTED WITH ORACLE ADVANCED ANALYTICS

Functionality	R Users	PLSQL Users
To invoke stand-alone R scripts	ore.doEval	rqEval
To invoke R scripts with a table as input	ore.tableApply	rqTableEval
For execution of R scripts for row-wise chunked computation	ore.rowApply	rqRowEval
For executing R scripts on data partitions	ore.groupApply	rqGroupEval
To create a R script and store it in the oracle database	ore.scriptCreate	rqScriptCreate
To drop a R script stored in the oracle database	ore.scriptDrop	rqScriptDrop

PLSQL = procedural language/structured query language.

Analytical SQL and PLSQL Functions

Analytics functions in SQL and PLSQL help data scientists and developers to perform various useful tasks using SQL and PLSQL functions that were previously confined to procedural languages. Data wrangling and shaping up the data becomes much easier using these functions. Operations on data is faster, as these functions sit close to the database and can be embedded into the data mining workflows to automate various tasks.

Package DBMS_STATS_FUNC

This PLSQL function packages provides various statistical tasks that can be used to describe and understand the data. The first task data scientists do is to understand the data at hand. For most of the cases, they summarize the data, validate whether the predictors are fitting in a normal distribution, and then carry out various transformations to make it ready to be modelled. Using the functions from DBMS_STATS_FUNC package, which are listed in Table 1-8, a data scientist can automate the mandatory tasks that they need to perform in every data science project. The package provides the summary measures for a dataset and results in a numeric form for distribution tests, which helps in automation.

Table 1-8. Routines in DBMS_STATS_FUNC

SUMMARY	Calculates different summary statistics for a dataset such as count of records, minimum and maximum value of an attribute, mean, mode, standard deviation, five quantile values, and top and bottom five values. The summarized values provide data scientists with inputs on the quality of a dataset.
NORMAL_DIST_FIT	Provides tests on how well the attributes in a dataset fit into a normal distribution. SHAPIRO_WILKS test is the default test, although it supports other methods such as KOLMOGOROV_SMIRNOV, ANDERSON_DARLING, or CHI_SQUARED tests. Almost all machine learning algorithms used in business analytics projects are parametric in nature, as parametric statistical tests are more powerful than their equivalent nonparametric tests. Normality is an important assumption for parametric statistical models. It is mostly checked in projects by plotting the data or checking measures such as kurtosis. Using distribution checks provided by this function helps in automation of this activity and takes overhead of manual inspections.
UNIFORM_DIST_FIT	Calculates how well the data fits into a uniform distribution.
WEIBULL_DIST_FIT	Calculates how well the data fits into a Weibull distribution.
EXPONENTIAL_DIST_FIT	Calculates how well the data fits into an exponential distribution.
POISSON DIST FIT	Calculates how well the data fits into a Poisson distribution.

Listing 1-1. A Sample Code to Illustrate the Capabilities of This Package

DECLARE

```
summary_values dbms_stat_funcs.SummaryType;
significance number;
BEGIN
dbms_stat_funcs.summary(p_ownername => 'APPS'
,p_tablename => 'TEST_PROD_SALES'
,p_columnname => 'revenue'
,p_sigma_value => 3
,s => summary_values);
dbms_output.put_line('******');
dbms_output.put_line('summary statistics of revenue column in TEST_PROD_
SALES table:');
dbms_output.put_line('******');
dbms_output.put_line('Number of records : '||summary_values.count);
dbms_output.put_line('Minimum Value : '||summary_values.min);
dbms_output.put_line('Maximum Value : '||summary_values.max);
```

```
dbms output.put line('Variance : '||round(summary values.variance));
dbms_output.put_line('Stddev : '||round(summary values.stddev));
dbms output.put line('Mean : '||summary values.mean);
dbms output.put line('Mode : '||summary values.cmode(1));
dbms_output.put line('Median : '||summary_values.median);
dbms output.put line('******'):
dbms output.put line('Ouantiles');
dbms output.put line('******');
dbms output.put line('1st Quantile : '||summary values.quantile 5);
dbms output.put line('2nd Quantile : '||summary values.quantile 25);
dbms output.put line('3rd Quantile : '||summary values.quantile 75);
dbms output.put line('4th Ouantile : '||summary values.guantile 95);
dbms output.put line('******');
dbms output.put line('Extreme Count : '||summary values.extreme values.count);
dbms output.put line('Top Five Values:'||summary values.top 5 values(1)||',
                                      '||summary values.top 5 values(2)||',
                                      '||summary values.top 5 values(3)||',
                                      '||summary values.top 5 values(4)||',
                                      '||summary values.top 5 values(5));
dbms output.put line('Bottom Five Values :
                                     '||summary values.bottom 5 values(5)||',
                                      '||summary values.bottom_5_values(4)||',
                                      '||summary values.bottom 5 values(3)||',
                                      '||summary values.bottom 5 values(4)||',
                                      '||summary values.bottom 5 values(5));
dbms output.put line('******');
dbms output.put line('Normality Test');
dbms output.put line('******');
dbms stat funcs.normal dist fit(ownername => 'APPS'
,tablename => 'TEST PROD SALES'
,columnname => 'revenue'
,test type => 'SHAPIRO WILKS'
,mean => summary values.mean
,stdev => summary values.stddev
,sig => significance);
dbms output.put line('Significance : '||significance);
END;
```

Here is an output for the Code.

```
PL/SQL procedure successfully completed.
******
Summary statistics of revenue column in TEST PROD SALES table:
*******
Number of records : 20000
Minimum Value : 0
Maximum Value
                 : 1210413.68
Variance
                  : 2427532790
Stddev
                 : 49270
Mean
                 : 33957.336273
Mode
                 : 0
Median
                 : 17559.3
******
Quantiles
******
1st Quantile : 2111.725
2nd Quantile
                 : 7437.54
3rd Ouantile
                 : 40681.04
4th Quantile
                  : 118287.18
******
Extreme Count : 384
Top Five Values : 1210413.68,1009957.9,745868.9,711955.2,706259.02
Bottom Five Values : 0,0,0,0,0
******
Normality Test
******
W value : .5914759761737297497910423313969493462734
Significance : 0
```

Figure 1-6. Code Output

Let us understand the results shown in Figure 1-6. The low W value returned from the Shapiro-Wilks test indicates a disagreement with the null hypothesis that the data for the revenue column follows normal distribution. Also, the significance or p value is 0, indicating the null hypothesis to be rejected (0.05 being a typical threshold to accept a null hypothesis). We can conclude that the revenue data is non normal.

Note When data is non normal, other distribution tests can be conducted to understand the underlying distribution. Then an appropriate transformation function can be applied to convert it to a normal distribution. Using Oracle's PLSQL APIs and SQL functions, all these tasks can be automated to avoid manual inspections using plots and graphs.

SQL Functions

The analytical functions provided in SQL are grouped into various categories as shown in the following.

Aggregate functions

Average functions are very useful for understanding the data and presenting its summarized view. Knowing the maximum and minimum salary of an employee in a department, average revenue of each product line in an organization, and average customer churn in a year are some of its examples. Some of the widely used aggregate functions such as average, min, max, first_value, and last_value are described in the following section.

Average returns the average value of an attribute. In the following code and the output in Figure 1-7, the average value of revenue per product line is returned:

```
select product_line,avg(revenue)
from TEST_PROD_SALES
group by product_line;
```

	PRODUCT_LINE	AVG(REVENUE)
1	Outdoor Protection	7693.050708577517314864144912093766648908
2	Golf Equipment	53657.1476810016330974414806750136091453
3	Camping Equipment	40872.074089572886045305204910945875843
4	Mountaineering Equipment	33453.7488519313304721030042918454935622
5	Personal Accessories	30954.7050202569741868271790716518115523

Figure 1-7. Average revenue per product_line

Max returns the maximum value of an attribute. In the following code and the output in Figure 1-8, the maximum value of revenue per product line is returned as a result:

select order_method_type, max(revenue)
from TEST_PROD_SALES
group by order_method_type

	ORDER_METHOD_TYPE	MAX(REVENUE)
1	Special	176832.81
2	Web	1009957.9
3	Telephone	1210413.68
4	Fax	264055.22
5	Sales visit	459086.36
6	Mail	180918.4
7	E-mail	298694.58

Figure 1-8. Maximum revenue per ORDER_METHOD_TYPE

Min returns the minimum value of an attribute. In the following code and the output in Figure 1-9, the minimum value of revenue per product line is returned as a result:

select order_method_type, min(revenue)
from TEST_PROD_SALES
group by order_method_type

	ORDER_METHOD_TYPE	MIN(REVENUE)
1	Special	0
2	Web	0
3	Telephone	0
4	Fax	294
5	Sales visit	0
6	Mail	0
7	E-mail	0

Figure 1-9. Minimum revenue per ORDER_METHOD_TYPE

CUME_DIST calculates the cumulative distribution of a value in a group of values. In the following code and the output in Figure 1-10, the cumulative distribution of values based on the revenue in each product line is calculated. We can interpret from the results that 60% of the product lines have revenue less than or equal to Golf Equipment.

```
SELECT product_line, sum(revenue), CUME_DIST()
OVER ( ORDER BY sum(revenue)) AS cume_dist
FROM TEST_PROD_SALES
WHERE quarter = 'Q1 2012'
group by product_line;
```

CHAPTER 1 GETTING STARTED WITH ORACLE ADVANCED ANALYTICS

	PRODUCT_LINE	SUM(REVENUE)	CUME_DIST
1	Outdoor Protection	6405575.14	0.2
2	Mountaineering Equipment	27392359.63	0.4
3	Golf Equipment	45585426.86	0.6
4	Camping Equipment	101300991.84	0.8
5	Personal Accessories	112544107.06	1

Figure 1-10. Cumulative distribution of total revenue per product_line

First value function returns the first result from an ordered set of values. The following code and Figure 1-11 show the revenue of a product line along with the most unprofitable product line for a quarter:

```
SELECT quarter, product_line,FIRST_VALUE(product_line)
OVER ( ORDER BY tot_revenue ASC ROWS UNBOUNDED PRECEDING) AS unprofitable_
product_line,tot_revenue revenue
FROM (select quarter, product_line,sum(revenue) tot_revenue from TEST_PROD_
SALES where quarter = 'Q1 2012' group by quarter,product_line)
ORDER BY product_line,revenue;
```

	QUARTER		<pre> PRODUCT_LINE </pre>	UNPROFITABLE_PRODUCT_LINE	REVENUE	
1	Q1	2012	Camping Equipment	Outdoor Protection	101300991.84	
2	Q1	2012	Golf Equipment	Outdoor Protection	45585426.86	
3	Q1	2012	Mountaineering Equipment	Outdoor Protection	27392359.63	
4	Q1	2012	Outdoor Protection	Outdoor Protection	6405575.14	
5	Q1	2012	Personal Accessories	Outdoor Protection	112544107.06	

Figure 1-11. Revenue of the most unprofitable product line for a quarter

Last value returns the last result from an ordered set of values. The following code and Figure 1-12 shows revenue of a product line along with the most profitable product line for a quarter:

```
SELECT quarter, product_line,LAST_VALUE(product_line)
OVER (ORDER BY tot_revenue ASC ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING) AS profitable_product_line,tot_revenue revenue
FROM (select quarter, product_line,sum(revenue) tot_revenue from TEST_PROD_
SALES where quarter = 'Q1 2012' group by quarter,product_line)
ORDER BY product_line,revenue;
```

	QUARTER	PRODUCT_LINE	PROFITABLE_PRODUCT_LINE	REVENUE
1	Q1 2012	Camping Equipment	Personal Accessories	101300991.84
2	Q1 2012	Golf Equipment	Personal Accessories	45585426.86
3	Q1 2012	Mountaineering Equipment	Personal Accessories	27392359.63
4	Q1 2012	Outdoor Protection	Personal Accessories	6405575.14
5	Q1 2012	Personal Accessories	Personal Accessories	112544107.06

Figure 1-12. Revenue of most profitable product line for a quarter

Ranking functions

Ranking functions are used to rank values in a group of values based on the given criteria in the SQL query. These functions are useful for cases where a ranking is to be done based on some parameters: for example, ranking employees within a department; ranking products based on their revenues; and ranking customers based on their monthly Internet usage. Rank and Dense rank are two widely used ranking functions.

Rank provides the rank of a particular value in a group of values. The following code and Figure 1-13 returns the ranks of individual product lines based on their revenue:

```
SELECT product_line,
sum(revenue),
RANK() OVER (order by sum(revenue) DESC) "rank"
FROM TEST_PROD_SALES
group by product_line;
```

Result:

	PRODUCT_LINE	SUM(REVENUE)	🚯 rank
1	Personal Accessories	267417696.67	1
2	Camping Equipment	236363204.46	2
3	Golf Equipment	98568180.29	3
4	Mountaineering Equipment	62357787.86	4
5	Outdoor Protection	14439856.18	5

Figure 1-13. Rank of product lines based on their revenue

Dense rank is same as rank function except that it assigns the same rank to two different records if their values are the same. In the following code and Figure 1-14, the product Hailstorm Titanium Irons for record 180 and 181 are assigned the same rank as their revenue is the same:

```
SELECT product_line,product,
DENSE_RANK() OVER (order by revenue DESC) "rank"
FROM TEST_PROD_SALES
where quarter = 'Q1 2012';
```

	PRODUCT_LINE	REVENUE	<pre> rank </pre>
2	Personal Accessories	Inferno	172
	Camping Equipment	Canyon Mule Weekender Backpack	173
14	Camping Equipment	Star Gazer 3	174
75	Golf Equipment	Hailstorm Titanium Woods Set	175
76	Camping Equipment	Star Gazer 2	176
77	Camping Equipment	TrailChef Deluxe Cook Set	177
78	Personal Accessories	TX	178
79	Personal Accessories	Zone	179
80	Golf Equipment	Hailstorm Titanium Irons	180
31	Golf Equipment	Hailstorm Titanium Irons	180
82	Camping Equipment	Star Gazer 2	181
83	Mountaineering Eq	Husky Rope 200	182
84	Camping Equipment	Star Gazer 2	183
35	Mountaineering Eq	Granite Extreme	184
6	Golf Equipment	Hailstorm Titanium Woods Set	185
37	Golf Equipment	Blue Steel Max Putter	186
88	Camping Equipment	Star Gazer 3	187

Figure 1-14. Assignment of the same rank to product Hailstorm Titanium Irons using the DENSE_RANK function

Statistical functions

Many statistical aggregates, distribution fitting functions, and hypothesis tests are available as functions to be directly applied on data by writing a simple SQL function. This makes it easier for a user to perform the calculations and run hypothesis tests on data sources without the use of any complicated statistical analysis tool. Tests such as the t-Test, F-Test, Chi-square, Kolmogorov-Smirnov Test; statistical aggregates such as variance, standard deviation, correlation, and covariance; and distribution fitting tests such as the Kolmogorov-Smirnov test, Anderson Darling test, Normal, Uniform, Weibull, and Exponential form a part of the statistical SQL functions. The following are some examples of the statistical functions available in oracle database.

Variance is a measure of the spread in values of a variable. It gives a measure of data distribution around the mean, that is, how far the actual value is from the expected value.

Standard deviation is the square root of variance. It standardizes the unit of measure to make the results comparable across variables. The following code and Figure 1-15 are examples of standard deviation and variance:

```
select VARIANCE(revenue), STDDEV(revenue)
from TEST_PROD_SALES
```

	VARIANCE(REVENUE)	STDDEV(REVENUE)	
1	2427532790.439082723607180359017950897545	49269.9988881579205136428926575108071119	

Figure 1-15. Variance and standard deviation of revenue

Correlation measures the strength of relationship between a pair of variables. It is a standardized measure of covariance, and the value of the correlation coefficient always varies from –1 to +1. There are three widely used types of correlations: Pearson correlation for parametric and linearly related variables, Kendall rank correlation, and spearman correlation for nonparametric measures.

In the following code and Figure 1-16 example, we demonstrate the use of the spearman correlation (corr_s) to calculate the degree of relationship between revenue and gross_margin:

```
select corr_s(revenue,gross_margin) from TEST_PROD_SALES
```

Figure 1-16. Correlation of revenue and gross margin

The *t-test* is used to compare the mean of two groups and determine whether they are statistically different from each other. Depending on the type of test we want to conduct, a t-test can be one-tailed or two-tailed. Two-tailed tests are used to measure the differences between means of two independent samples, and a one-tailed test is used to compare the mean of a population to a target value. The following code and Figure 1-17 are an example of a one-tailed t-test using T_TEST_ONE sql function:

```
SELECT product_line,AVG(revenue) group_mean,
STATS_T_TEST_ONE(revenue, 4000, 'STATISTIC') t_observed
FROM TEST_PROD_SALES
group by product_line;
```

<pre> PRODUCT_LINE </pre>	GROUP_MEAN	T_OBSERVED
1 Camping Equipment	40872.074089572886045305204910945875843	48.3885253182395041744409979690786791905
2 Golf Equipment	53657.1476810016330974414806750136091453	39.3865709907757016161783354753748509175
3 Mountaineering Equipment	33453.7488519313304721030042918454935622	38.83115841184911718504067105377082049878
4 Outdoor Protection 7	7693.050708577517314864144912093766648908	16.95724886040885947487986602816591788604
5 Personal Accessories	30954.7050202569741868271790716518115523	53.078609976949537172676664513777656439

Figure 1-17. Example of a one-tailed t-test

Bucketing functions

Bucketing functions are useful to bucket or bin the data into distinct groups. For example, we can bucket customers' ages into four distinct groups to analyze their common traits across each age group. WIDTH_BUCKET and NTILE are two widely used bucketing functions.

The *width bucket* function divides the dataset into buckets with an equal interval as specified in the interval size parameter. Anything out of the bucket will be put into an additional bin.

In the following code and Figure 1-18, revenue between \$0 and \$814437 is bucketed into 10 equal bins. Any value falling out of this range will get into the 11th bin.

```
SELECT product, revenue, width_bucket(revenue,0,814437.11,10)
AS bucket FROM TEST_PROD_SALES
where quarter = 'Q1 2012'
and product = 'Star Lite'
```

	PRODUCT	REVENUE	BUCKET
1	Star Lite	1210413.68	11
2	Star Lite	189268.48	3
3	Star Lite	157607.76	2
4	Star Lite	273813.04	4
5	Star Lite	113769.84	2
6	Star Lite	463777.36	6
7	Star Lite	128382.48	2
8	Star Lite	127686.64	2
9	Star Lite	304430	4
10	Star Lite	182310.08	3
11	Star Lite	89415.44	2
12	Star Lite	126642.88	2
13	Star Lite	235193.92	3
14	Star Lite	248414.88	4
15	Star Lite	250850.32	4
16	Star Lite	178135.04	3
17	Star Lite	364272.24	5
18	Star Lite	180570.48	3
10			-

Figure 1-18. Width bucket example

NTILE is used to split the data into *n* number of partitions, where *n* specifies the number of buckets to be created. Unlike width_bucket, here the number of buckets remains unchanged, and no additional buckets are created. All the data are fitted into the specified number of buckets. In the following code and Figure 1-19 example, 10 buckets are created based on the revenue of each product for a quarter:

SELECT product, sum(revenue), NTILE(10) OVER (ORDER BY sum(revenue) DESC)
AS quartile FROM TEST_PROD_SALES
where quarter = 'Q1 2012'group by product;

	\$ PRODUCT	SUM(REVENUE)	QUARTILE
7	Hailstorm Titanium Woods Set	6492651.88	1
8	Canyon Mule Journey Backpack	6087776.43	1
9	Hailstorm Steel Woods Set	5726026.8	1
10	Star Dome	5554895.36	1
11	Star Gazer 3	5477580.87	1
12	Maximus	5438310	1
13	Dante	5381147.05	1
14	Hibernator Extreme	5351965.02	1
15	Venue	5291175	2
16	Canyon Mule Weekender Backpack	5208449.94	2
17	Hailstorm Titanium Irons	4762978.74	2
18	Infinity	4639603	2
19	Lady Hailstorm Titanium Woods Set	4207799.48	2
20	Hibernator	4150123.38	2
21	Trendi	4122789.2	2
22	Hailstorm Steel Irons	4118956.63	2
23	Inferno	4099673.35	2
24	Canyon Mule Extreme Backpack	3815925.35	2
25	Lady Hailstorm Titanium Irons	3812309.91	2
26	Fairway	3675057.75	2
27	Capri	3636585	2
28	TrailChef Deluxe Cook Set	3480411.48	2
29	Hibernator Lite	3458923.96	3
30	Kodiak	3400446.3	3
31	Course Pro Putter	3205371.25	3
32	Lady Hailstorm Steel Woods Set	3057720.48	3
33	TrailChef Single Flame	2910934.32	3
34	Hibernator Self - Inflating Mat	2823148.37	3
35	Canyon Mule Climber Backpack	2763172.04	3

Figure 1-19. NTILE example

Windowing functions

Windowing is a very useful function for any aggregate calculation that involves a range of values or a group of rows. Calculations for moving averages or running totals may require reference to one or more values from preceding or following rows. Here, the window function comes handy. The calculations are carried out across all values from a specified start point to an end point.

In the following code and Figure 1-20 example, a window function is used to calculate the running total of monthly sales of different product lines. The window for the running total calculation is specified as rows between the first row of the results and the current row.

```
SELECT product_line,
SUM(revenue) monthly_sales,
SUM(SUM(revenue)) OVER (ORDER BY product_line
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) running total
```

FROM TEST_PROD_SALES
GROUP BY product_line
ORDER BY product_line;

	<pre> PRODUCT_LINE </pre>	MONTHLY_SALES	RUNNING_TOTAL
1	Camping Equipment	236363204.46	236363204.46
2	Golf Equipment	98568180.29	334931384.75
3	Mountaineering Equipment	62357787.86	397289172.61
4	Outdoor Protection	14439856.18	411729028.79
5	Personal Accessories	267417696.67	679146725.46

Figure 1-20. Example of windowing function to calculate running total

LAG and LEAD functions

The *LAG function* is used to access data from previous rows. It is useful while calculating differences or comparing values between a current record and previous records.

The following code and Figure 1-21 show the current revenue; previous revenue, which is the lag of the current revenue; and the difference in the revenues for the organization. The column revenue_prev is zero for the first column, as its previous value is unknown.

```
SELECT quarter,
sum(revenue) current_revenue,
LAG(sum(revenue), 1, 0) OVER (ORDER BY sum(revenue)) AS revenue_prev,
sum(revenue) - LAG(sum(revenue), 1, 0) OVER (ORDER BY sum(revenue)) AS
revenue_diff
FROM TEST_PROD_SALES
group by quarter
order by quarter desc
```

The *LEAD function* is used to access data from the next rows. It is useful while calculating differences or comparing values between a current record and the following records.

	00	UARTER	CURRENT_REVENUE	REVENUE_PREV	REVENUE_DIFF
1	<u>Q</u> 3	2012	107737504.97	0	107737504.97
2	Q2	2012	278180759.96	107737504.97	170443254.99
3	01	2012	293228460.53	278180759.96	15047700.57

Figure 1-21. Example of LAG function

In the following example, the code and Figure 1-22 show the current_revenue, leading or revenue of the next quarter, and their differential value for product line Outdoor Protection. Notice that the value for next_revenue is zero for Q1 2012, as it is the last column, and the next quarter revenue is unknown.

```
SELECT quarter,
sum(revenue) AS current_revenue,
LEAD(sum(revenue), 1, 0) OVER (ORDER BY sum(revenue)) AS next_revenue,
LEAD(sum(revenue), 1, 0) OVER (ORDER BY sum(revenue))-sum(revenue) AS
revenue_difference
FROM TEST_PROD_SALES
where product_line='Outdoor Protection'
group by quarter
order by quarter desc
```

	0	QUARTER	CURRENT_REVENUE	NEXT_REVENUE	REVENUE_DIFFERENCE
1	Q3	2012	2132396.32	5901884.72	3769488.4
2	Q2	2012	5901884.72	6405575.14	503690.42
3	01	2012	6405575.14	0	-6405575.14

Figure 1-22. Example of LEAD function

PIVOT and UNPIVOT functions

The pivot function summarizes or aggregates the data as per a column's value. The pivoted values are shown as column names and the aggregated data as their values. It has the same functionality as pivot in Excel.

In the following code and Figure 1-23, the quantity of sold products for each of the specified product lines is shown. Here the pivot functionality is used to calculate the sum of product quantity for each product_line.

```
SELECT *
FROM (SELECT product_line, quantity
FROM TEST_PROD_SALES)
PIVOT (SUM(quantity) AS sum_quantity FOR (product_line) IN ('Outdoor
Protection' AS Outdoor_Protection, 'Golf Equipment' AS Golf_Equipment,
'Camping Equipment' AS Camping_Equipment
,'Mountaineering Equipment' as Mountaineering_Equipment,'Personal
Accessories' as Personal_Accessories));
```


Figure 1-23. Pivot function example

Unpivot is used to transform column-based data to individual rows. This is the reverse functionality of the pivot operator.

To demonstrate the unpivot functionality, the test data is created using the following scripts:

```
CREATE TABLE TEST_PROD_QUANTITY (
id NUMBER,
product_line_outdoor NUMBER,
product_code_Golf NUMBER,
product_code_Camping NUMBER
);
INSERT INTO TEST_PROD_QUANTITY VALUES (1, 5404, 3177, 748);
INSERT INTO TEST_PROD_QUANTITY VALUES (2, 114, 304, 321);
INSERT INTO TEST_PROD_QUANTITY VALUES (3, 321, 828, 992);
INSERT INTO TEST_PROD_QUANTITY VALUES (4, 159, 517, 1502);
COMMIT;
```

In the following code and Figure 1-24 example, the product lines are transposed from a columnar format to different rows to indicate different product lines and their respective quantity:

SELECT *

```
FROM TEST PROD QUANTITY
```

UNPIVOT (quantity FOR product_line IN (product_line_outdoor AS 'Outdoor Protection', product_code_Golf AS 'Golf Equipment', product_code_Camping AS 'Camping Equipment'));

	∲ ID	PRODUCT_LINE	QUANTITY
	1	Outdoor Protection	5404
!	1	Golf Equipment	3177
;	1	Camping Equipment	748
ł	4	Outdoor Protection	159
i	4	Golf Equipment	517
i	4	Camping Equipment	1502
,	2	Outdoor Protection	114
;	2	Golf Equipment	304
ł	2	Camping Equipment	321
I	3	Outdoor Protection	321
	3	Golf Equipment	828
!	3	Camping Equipment	992

Figure 1-24. Unpivot function example

www.allitebooks.com

Summary

In this chapter, I discussed Oracle advanced analytics' technical stack—Oracle Data Miner and Oracle R Enterprise—and how both these technologies expose hundreds of API to perform data science tasks. In this chapter, I provided examples of various analytical SQL and PLSQL functions that can be useful in a data science project. Apart from these examples, there are other SQL functions that can be used to analyze data. The whole list of analytical functions can be found on the OTN web site. The purpose of this chapter was to introduce you to the world of data science and machine learning and illustrate how the oracle database's analytical queries, Oracle Data Miner and Oracle R Enterprise, can be used to automate the routines in a data science project. The packages and functions form a base for the use cases that we walk through in the next chapters.

CHAPTER 2

Installation and Hello World

"The secret of getting ahead is getting started."

-Mark Twain

The first milestone for learning something new is to download the software, install it, and run an example "Hello World" program. It gives us confidence that the platform is all set for us to experiment and motivates us to start our journey to explore more.

In this chapter, I will cover the following topics:

- Installation and configuration of Oracle Data Miner
- Sample Hello World Oracle Data Miner workflow
- Oracle Data Miner components for the SQL developer GUI
- Installation and configuration of Oracle R Enterprise server and client
- Sample Hello World program using Oracle R
- Invoking an ORE script using SQL statements from the SQL developers

Note It is recommended you install the software and execute the sample programs yourself to have a better understanding of the technology stack. Alternatively, you can download the preinstalled software virtual machine from Oracle Technology Network's Big Data Appliance page.

Booting Up Oracle Data Miner

Installation Prerequisites

- Oracle 12c (12.1.0.2) Enterprise Edition/Oracle 11 Enterprise Edition should be already installed. If not installed, it can be downloaded and installed from Oracle Technology Network Database Download page.
- The latest version of SQL Developer (4.1.3) is installed. If not, it can be downloaded and installed from Oracle Technology Network SQL Developer Download Page.
- Validate whether the Data Miner option is already enabled. This can be done by checking if DATA_MINING option is set to TRUE in the table V\$Option. If it is FALSE, ask your DBA (database administrator) to enable the data mining option or enable it running command chopt enable dm from the installed Oracle Database's home bin directory.
- Credentials for SYS user of the Oracle Database.

Optional:

• Sample schemas for Oracle Database are installed. Some of the examples in this book use the tables/views of these schemas.

Installation

A data mining user and Data Miner repository are needed to start using Oracle Data Miner. This can be done using SQL scripts or from SQL developer GUI. A SQL script eases the mundane task of manual configurations each and every time. For those who are not familiar with SQL scripts, SQL developer comes handy. SQL developer is an IDE (integrated development environment) for executing SQL and PLSQL scripts. Oracle Data Miner's GUI and workflows are a part of it and can be easily configured from the SQL developer.

- 1. Creating a data mining user is the first step in configuring Oracle Data Miner. To start the configuration, open SQL Developer and follow these steps.
- 2. Connect to user SYS and click on the plus (+) icon located beside the connection as shown in Figure 2-1. This will open up a drop-down list of various options available for user SYS.

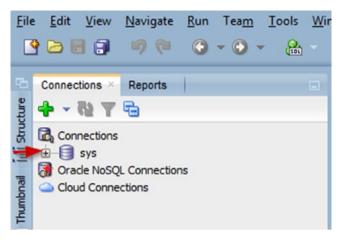


Figure 2-1. SYS user connection tab

Scroll down to the bottom of the drop-down list of options, right-click on the Other Users icon, and select Create User (see Figure 2-2).

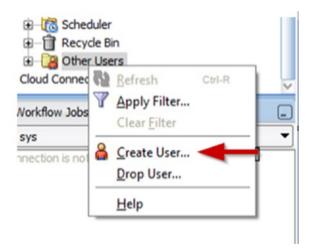


Figure 2-2. Create new user option

CHAPTER 2 INSTALLATION AND HELLO WORLD

3. In the users tab, enter the preferred data mining user name, password, default tablespace, and temporary tablespace. In general, tablespace is a location where all database objects are stored. For a data mining user, you can select either an existing tablespace or create a new tablespace to be used by this user. If you want to store the data mining objects separately from other database objects, the second option is a better choice. As shown in Figure 2-3, we choose the User Name "DMUSER," Password "TEST 123," Default Tablespace "USERS," and Temporary Tablespace "TEMP."

	DMUSER
New Password	
Confirm Password	•••••
Edition Enabled	USERS 👻
Default Tablespace	USERS
Temporary Tablespace	TEMP

Figure 2-3. User tab of Create/Edit user option

4. Navigate to the System Privileges tab. This tab contains all the privileges to be granted to a user. For experienced Oracle Database administrators, based on their judgement, they can choose the privileges required for that user. However, following (Table 2-1 and Figure 2-4) are some minimum required privileges that are to be granted to a data mining user. To grant the roles, mark the granting option checkbox next to the privileges.

 Table 2-1.
 List of Privilages to Be Marked

Privilege

CREATE JOB

CREATE MINING MODEL

CREATE PROCEDURE

CREATE SEQUENCE

CREATE SESSION

CREATE SYNONYM

CREATE TABLE

CREATE TYPE

CREATE VIEW

CREATE ANY DIRECTORY

		Results	_
Grant All Revoke All Admin All Admi	in None		
Privilege 段	Granted	Admin Option	
CREATE MINING MODEL	 Image: A start of the start of		1
CREATE OPERATOR			
CREATE PLUGGABLE DATABASE			
CREATE PROCEDURE	Image: A start of the start		
CREATE PROFILE			
CREATE PUBLIC DATABASE LINK			
CREATE PUBLIC SYNONYM			
CREATE ROLE			
CREATE ROLLBACK SEGMENT			ſ
CREATE RULE			U
CREATE RULE SET			
CREATE SEQUENCE	 Image: A set of the set of the		
CREATE SESSION	~		
CREATE SQL TRANSLATION PROFILE			
CREATE SYNONYM	~		
CREATE TABLE	~		
CREATE TABLESPACE			
CREATE TRIGGER			
CREATE TYPE			

Figure 2-4. System Privilages marked to be granted to the new user

5. In the Quotas tab, you can define the amount of space to be allocated to a user in a tablespace. One can limit this space or select unlimited space to be allocated for that user. We have selected unlimited quota for DMUSER (see Figure 2-5).

ser Granted Roles System Privileges	Quotas	601			
er Granted Roles System Privileges	Quotas	SQL			
Tablespace 🕯	Unlimi	ited	Quota	Units	
EXAMPLE					
SYSAUX					
SYSTEM					
TEMP					
UNDOTBS1					
USERS					

Figure 2-5. Unlimited Quota marked for tablespace USERS

6. Navigate to the SQL tab. This tab shows all SQL statements for creating a user that were generated from the options we chose (see Figure 2-6). In an organization, there can be more than one data mining user. One can save the commands displayed in this tab to a notepad file and with the .sql extension to prepare a SQL script to create data mining users. This script would come in handy in creating new users quickly instead of manually configuring the users every time.

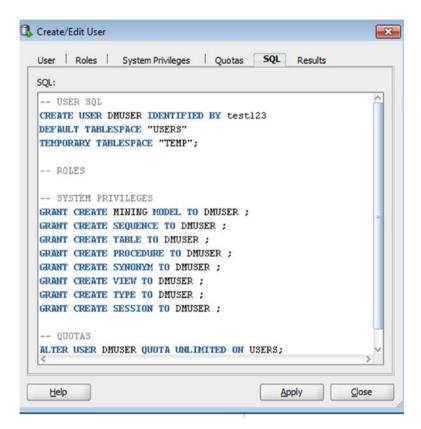


Figure 2-6. System-generated SQL scripts for creating the user

7. Continue with the user creation by selecting the Apply button at the lower end of the Create/Edit user screen. The commands get executed, and if everything goes as expected, the success message appears in the screen. In case of any error, the error is displayed.

User Roles System Privileges Quotas SQL	Results
Results:	
user DMUSER created.	
GRANT succeeded.	

Figure 2-7. Results tab

8. Now that the user is created, it's all set for us to enable Oracle Data Miner and create the data mining repository. Get back to the connections tab, which appears at the left corner of the SQL Developer, or select Connections from the View option on the toolbar. Right-click on Connections and select the New Connection option (see Figure 2-8).

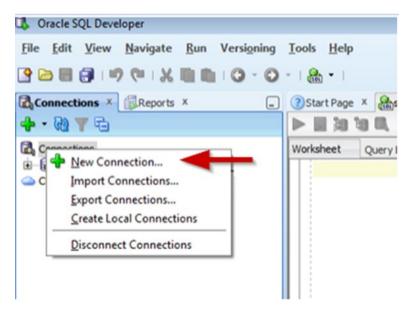


Figure 2-8. New Connection option

9. Enter the details of the user that we recently created. Also, enter the Hostname, Port number and SID (site identifier) of the Oracle Database. You can ask the DBA for these details or you can find it in the TNSNAMES.ORA file. You can provide a connection name to save the connection details in the SQL developer. Select Connect to log in to the database (see Figure 2-9). Alternatively, one can verify the connection details by selecting test option and then connecting to the database.

Note TNSNAMES.ORA is a SQL*Net configuration file that has the definitions of database addresses to establish connections with them from a client. It normally resides in the ORACLE_HOME\NETWORK\ADMIN directory.

Connection Name	Connection Details	Connection Name	dmuser
sys	sys@//localhost:15	Username	dmuser
		Password	
		Save Password	
		Oracle Acce	rss
		Connection Type	
		Hostname	localhost
		Port	1521
		⊙ SĮD	ord
		O Service name	ation T Kerberos Authentication Proxy Connection
		US Authentica	adon C Reiberos Audrendiadon C Proxy Connection

Figure 2-9. New/Select Database Connection screen

10. The Data Miner tab is by default invisible. To make it visible, navigate to the Tools section as shown in Figure 2-10 and select Make Visible in the Data Miner option.

Tools	100000				
Tools	Window	Help			
Dat	ta Modeler			۲	
Date Date Min Mo Mo SQ	tabase Di <u>f</u> f tabas <u>e</u> Expo gration onitor <u>S</u> QL onitor Sessio L <u>W</u> orkshee	rt	Alt-F10	•	🗊 dmuser9.sql × 🔒 sys5.s 🖗 🗟 儲 🚑 🏈 🗔 2r
Dat	ta Miner AP	Ç a))	Make Visible Drop Repository
E <u>x</u> t <u>F</u> ea <u>P</u> re	ernal Tools. atures ferences			-	
	Dat Dat Dat Mij Mo Mo Mo Mo Mo Mo Mo Mo Mo Est Dat Dat Est Est Est	 Database Diff Database Exponentiation Monitor SQL Monitor Session SQL Worksheet Unit Test Data Miner OLAP REST Data Server 	 Database Copy Database Diff Database Export Migration Monitor SQL Monitor Sessions SQL Worksheet Unit Test Data Miner OLAP REST Data Services External Tools Features Preferences 	 Database <u>C</u>opy Database Diff Database Export Migration Monitor <u>S</u>QL Monitor Sessions SQL <u>W</u>orksheet <u>U</u>nit Test Data Miner OLAP REST Data Services <u>Ex</u>ternal Tools <u>P</u>references 	 Database Copy Database Diff Database Export Migration Monitor Sessions SQL Worksheet Alt-F10 Unit Test Data Miner OLAP REST Data Services External Tools Features Preferences

Figure 2-10. Make the Data Miner option visible

11. After the preceding step, the Data Miner tab gets visible in the corner options. Navigate to the Data Miner tab. Right-click on Connections and select Add Connection (see Figure 2-11).

0	Oracle S	QL Dev	eloper			1.00	-
Eile	<u>E</u> dit	<u>V</u> iew	<u>N</u> avigate	<u>R</u> un	Tea <u>m</u>	<u>T</u> ools	<u>W</u> inc
	9 🗁 🛛		90	٢	- 🔾 -	801	-
ъ	Connec	tions	Reports	Data	Miner ×		
cture	🕂 🔂						5
IIII Connections - Structure	Con	nection	<mark> </mark>	nnecti	on		Ĩ

Figure 2-11. Add Data Miner connections

12. Select the data mining user, DMUSER, from the Select Connection list (Figure 2-12).

🔍 Select Con	nection	— ×
Select the con a new connec		use from the list, or create
Connection:	dmuser	- + /
Help		K Cancel

Figure 2-12. Select Connection screen

13. Once a user is selected, it appears in the connections tab as shown in Figure 2-13.

CHAPTER 2 INSTALLATION AND HELLO WORLD

6	Oracle SQL Deve	eloper		the longe
Eile	e <u>E</u> dit <u>V</u> iew	<u>N</u> avigate	<u>R</u> un Tea <u>m</u>	<u>T</u> ools <u>W</u> in
4	9 🗁 🗏 🗊	90	O - O -	- 80 -
ъ	Connections	Reports	Data Miner ×	
cture	🕂 🔂			
Connections - Structure	Connections	+		[∿

Figure 2-13. Data Miner DMUSER connection

14. Select the plus (+) icon beside DMUSER, which will pop up a notification to install the Data Miner repository (Figure 2-14). Click Yes to continue

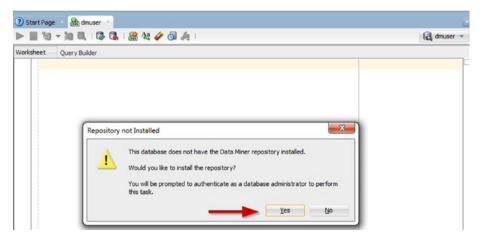


Figure 2-14. Install the Data Miner repository

15. As SYS user has SYSDBA credentials, it can be used to install a data mining user. Enter the SYS credentials and continue with the installation (see Figure 2-15).

Connection Infor	mation	
Jsername: SYS		
assword:		
Help	OK	Cancel

Figure 2-15. Enter SYS user and password screen

16. In the Repository Installation Settings, you have to choose the default tablespace and temporary tablespace for the ODMRSYS repository account (see Figure 2-16). ODMRSYS schema manages the runtime execution of workflows and other operations. It also stores the data miner projects and workflows that are connected to the database.

orksheet Query	Builder		
ſ	🐻 Repository Installatio	on Settings	23
	The repository installation	n task will create an account with these settings:	
	Repository Account	ODMRSYS	
	Default Tablespace	USERS	-
	ODMRSYS	TEMP	-
	Help	ОК Саг	ncel

Figure 2-16. Respository Installation Settings

17. In the next step, it shows the dialog box for installing the data miner repository (see Figure 2-17). It is the last step of the data miner repository creation where the data mining objects are created. Click on Start to continue with the repository creation.

Press Start to run the task	
🔽 Install Demo Data	Start
	Close

Figure 2-17. Install Data Miner Repository

If the Task Completed Successfully message appears as in Figure 2-18, Congratulations!! You have successfully configured Oracle Data Miner. If not, check the log for error details and debug the issue.

×
Show Log
Close

Figure 2-18. Data Miner Repository installation successful notification

Welcome to the World—Oracle Data Miner

Sometimes, even though the installation gets successfully completed, some of the components might get missed in the process. You can create a quick sample workflow to validate whether it is properly installed.

1. Navigate to the Data Miner tab and select DMUSER from the Connections list (see Figure 2-19).

<u>F</u> ile	e <u>E</u> dit	View	<u>N</u> avigate	<u>R</u> un	Tea <u>m</u>	Tools	Win
	9 🕞 🛛		90	\bigcirc	- 🔘 -	801	
ure 🖞	Connec		Reports	Data	Miner ×		-
[III] Connections - Structure	i (0) i (0)	nections	-	-			

Figure 2-19. Data Miner dmuser connection

2. The dmuser connection pops up various options to disconnect the user, add a new user connection, and create new project. It also has options to remove an existing connection or see the user's properties (see Figure 2-20). Select New Project from the list to create a new project.

Connections	Data Miner ×	
🔂 🕂		
Connection		
	<u>D</u> isconnect <u>A</u> dd Connection	
*	<u>N</u> ew Project <u>R</u> emove Connection	
1	Properties	

Figure 2-20. Create New Project option

3. Enter a project name and project description in the Comment section as shown in Figure 2-21.

Create P Enter a unic create work	ue name for your project. Once a project is created, you can	C I
Name:	demo_prj	
Comment:	demo project	
Help	OK Can	cel

Figure 2-21. Create a project name and comment

4. The project appears in the Connections tab under its schema/ user. Right-click the project and select New Workflow to create a new data mining workflow (Figure 2-22).

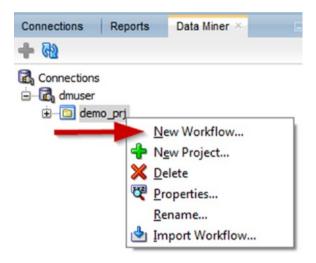


Figure 2-22. New Workflow

5. In the Create Workflow dialog box, enter a name for the workflow. We have entered it as hello_world as shown in Figure 2-23.

Enter a unique	name for the n	ew workflow.	Cæ
<u>N</u> ame:	hello_world	1	
Help		ОК	Cancel

Figure 2-23. Create New Workflow name

Once the workflow gets successfully created, the SQL developer IDE opens up various panels specific to data miner. I will discuss those panels in the next section. For the time being, drag the Data Source object from the components panel of Workflow editor to the workflow creation area as shown in Figure 2-24.

Note The data source node only handles tables or views.

Figure 2-24. Drag Data Source to the Workflow Editor

This creates a node to select a data source from the database. Select any of the Tables/ Views and click Finish to complete the data source creation as shown in Figure 2-25.

CHAPTER 2 INSTALLATION AND HELLO WORLD

elect Table						
Select Table	Available Tables/Views:			Q.* (A	J	
Select Columns			T	pe		
	DMUSER.INSUR_CUST_LTV_SAMPLE		TA	BLE		
	DMUSER.ODMR_CARS_DATA		TA	BLE		
	DMUSER.ODMR_SALES_JSON_DATA		TA	BLE		
	Include Tables from Other Schemas				Edit Sci	hemas
	AT			Q.+(N		hemas
	AT	Data Type	Mining Type	Q,~ (Ni Length		
	Columns Data	Data Type NUMBER	Mining Type Numerical		sme	
	Columns Data			Length	ame Column	
	Columns Data	NUMBER	Numerical	Length 22	ame Column 9	
	Columns Data Name AGE BANK_FUNDS	NUMBER NUMBER	Numerical Numerical	Length 22 22	ame Column 9 18	
	Columns Data Name AGE BANK_FUNDS BUY_INSURAINCE	NUMBER NUMBER VARCHAR2	Numerical Numerical Categorical	Length 22 22 100	ome Column 9 18 8	

Figure 2-25. Define the data source

- 6. Next, you would add a sample node for sampling the data. Sampling is done to select—a representative subset of data for modelling when the dataset is very large. Drag the sample node from the transforms section of the Workflow editor.
- 7. Right-click on the previously created data source node and select Connect (Figure 2-26). This operation will start an arrow to connect it to another node. Drag this arrow toward the sample node and click on the destination node (sample node; Figure 2-27). This connects both the data and sample nodes.

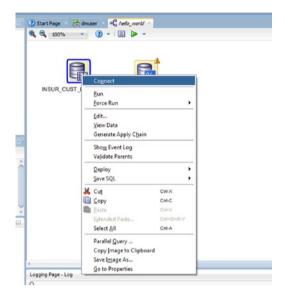


Figure 2-26. Connect INSUR_CUST_LTV_SAMPLE and Sample node

Figure 2-27. Final workflow with connected nodes

8. To run the workflow, right-click on the Sample node and select Run from the menu (Figure 2-28). This operation will also execute the prior workflow nodes in the workflow if they are not yet executed. Alternatively, you can run it by selecting the play button located at top of the workflow worksheet.

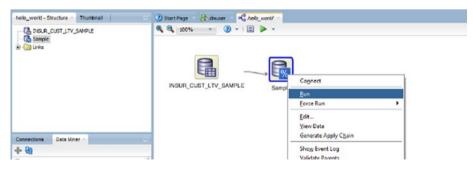


Figure 2-28. Run the workflow

When this task is successfully completed, it shows a tick in a small green box at each node (Figure 2-29); and if it fails, the node is identified by a cross mark in a red box. This makes it easy to debug the workflow, as it points only to the node that failed, and the event log shows why it failed.

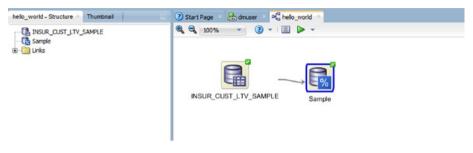


Figure 2-29. Successful execution of the workflow

SQL Developer Components for ODM

The Data Mining option in SQL Developer has various components that help in creating and managing data science projects. I discuss each of those components in this section.

Figure 2-30 shows the Data Miner tab for creating and editing data mining projects and workflows.

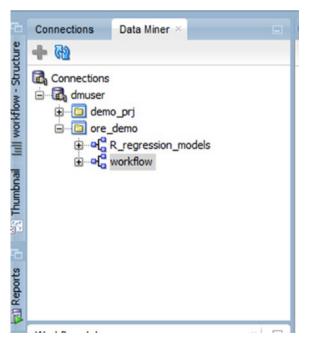


Figure 2-30. Data Miner tab

Figure 2-31 shows the Workflow Jobs dialog box used to monitor the status of all the workflows for a connection. While a job is currently executed, it also shows its progress.

dmuser		
Workflow	Project	Status
hello_world	demo_prj	1
R_regression	ore_demo	1

Figure 2-31. Workflow jobs

The Components panel (Figure 2-32) has all the functionalities that are supported by Oracle Data Miner to extract the data, transform it, create the model, and apply it to a new dataset.

Components	×
Q.* (0
Workflow Editor	•
± Data	
± Transforms	
<u></u> . Text	
± Models	
± Linking Nodes	

Figure 2-32. Components panel objects

Create Table or View: To create a new table/view for storing output results.

Data Source: To define a data source for building model. It can be a table or view.

Explore Data: To conduct exploratory data analysis.

Graph: To create various graphs such as line, scatter plot, bar chart, histogram, and box plot.

SQL Query: To embed SQL, PLSQL, and R scripts into the data mining workflow.

Update Table: To update a table based on a previous node's output.

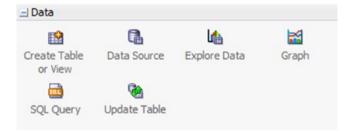


Figure 2-33. Data section

Aggregate: Creates aggregated columns (the same as the Group By functionality in SQL statements).

Filter Columns: To select attributes for the data source and for calculating importance of the attributes.

Filter Columns Details: Provides attribute importance details. To run this node, the prior filter columns node should be present, and the attribute importance option should be selected there.

Filter Rows: To filter rows based on certain conditions(the same as the Where condition in SQL statements).

Join: To join two or more data sources.

JSON (JavaScript Object Notation) Query: To extract attributes from a JSON file.

Sample: For specifying the sampling method to be used for creating samples from the data.

Transform: For converting data to a suitable format for modelling. Using this node, you can create new attributes or apply various transformation functions such as log transform to an existing attribute.

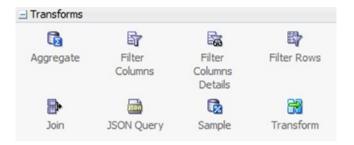


Figure 2-34. Transforms section

Apply Text: To apply the text transformations prepared in Build Text node on a new data set.

Build Text: It is used to tokenize the words and calculate their occurrence frequency in a text.

Text Reference: It can be used to reference a text transformation prepared in a current workflow or any other previously saved workflow.

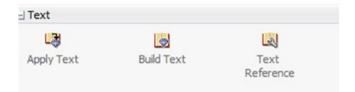


Figure 2-35. Text section

Anomaly Detection: To build an anomaly detection model using one class SVM.

Association: To create an association rules model using an Apriori algorithm.

Classification: To create a classification model using decision trees, SVM, Naïve Bayes, and GLM (Generalized linear model).

Clustering: To cluster data using *k*-means, O-Cluster, and Expectation Maximization algorithms.

CHAPTER 2 INSTALLATION AND HELLO WORLD

Models			
	5		8
Anomaly Detection	Association	Classification	Clustering
i kä	\$	23	1
Feature Extraction	Model	Model Details	Regression

Figure 2-36. Models section

Feature Extraction: To extract features from data using Non-Negative Matrix Factorization and Principal Component Analysis methods.

Model: To apply an existing model from a data miner repository in the current workflow.

Model Details: Shows the various details such as its attributes or rules for a model that were used to build it.

Regression: To perform regression analysis on the data using the GLM and SVM algorithms.

Predictive Qu	eries		
2	8	ŝ	Ø
Anomaly Detection Query	Clustering Query	Feature Extraction Query	Prediction Query

Figure 2-37. Predictive Queries section

Predictive queries (see Figure 2-37) are used to create the same models that were discussed in the model section. However, here the user need not be aware of the underlying algorithms. For example, in prediction node for model sections, users are given the option to select algorithms of their choice and parameters to optimize it. In prediction query, the user needs to specify only the data source, and it provides the output. The choice of algorithms and parameters is hidden from the user.

Evaluate and Apply		
1	😵	
Apply	Test	

Figure 2-38. Evaluate and Apply section

Apply: For applying a model to a new dataset.

Test: To test a classification or regression model using a separate test data source.

Link: To link two different nodes.

Figure 2-39. Linking Nodes section.

ODM Data Dictionary

The data dictionary for Oracle Data Miner provides information on the mining models, the settings, and the attributes of all the created data mining models.

The three database tables in Table 2-2 form part of ODM's data dictionary:

Table 2-2. Mining Tables

Provides information about the name of the model, the algorithm used, its size, and the build duration
Provides details of the attributes used in creating the model
Stores the model settings such as the model parameters

Note * is to be replaced by ALL/DBA/USER based on user responsibility and access provided.

Boot Up Oracle R Enterprise

Oracle R Enterprise can be downloaded from the Oracle Technology Network (OTN) web site. The latest available version is 1.5. Open source R or Oracle distribution of R can be installed in conjunction with ORE as a client. It is recommended installing Oracle's R distribution, as it is optimized on hardware-specific platforms for faster performance.

Prerequisites

- Oracle 12c (12.1.0.2) Enterprise Edition/Oracle 11 Enterprise Edition should be already installed. If not installed, it can be downloaded and installed from Oracle Technology Network Database Download page.
- Not all versions of Oracle database, Oracle R Enterprise, and Oracle R Distribution are compatible with each other. It is recommended following the support matrix found on the OTN web site to install the required compatible versions.
- Table 2-3 lists the current Oracle R Enterprise Server Support Matrix and the stack used for this book.

Table 2-3. Oracle R Enterprise Server Support Matrix

Oracle R Enterprise	Open Source R or Oracle R Distribution	Oracle Database (see Note)
1.5	3.2.x	11.2.0.4, 12.1.0.1, 12.1.0.2

- Download installation executables for Oracle R Distribution, Oracle R Enterprise server, client, and supporting packages from Oracle Technology Network R Executables Download Page
- Verify the following paths in environment variables

PATH: Add your R directory such as C:\Program Files\R\R-3.2.0\ bin\x64

*R***_HOME**: Add your R home directory, which looks like C:\Program Files\R\R-2.13.2\bin\x64

ORACLE_HOME: Add you Oracle home directory, which looks like D:\app\sddas\product\12.1.0\dbhome_1

ORACLE_SID: Add your oracle database SID such as ORCL

You will first install Oracle R Distribution. It is the Oracle-supported distribution of Open Source R software. This acts as a client for executing R and ORE (Oracle R Enterprise) scripts.

Oracle R Distribution

Run the Oracle R Distribution executable to kick-start its installation. The welcome screen shows the distribution of R that is to be installed. If you have downloaded the right version, click Next to continue with the installation (see Figure 2-40).

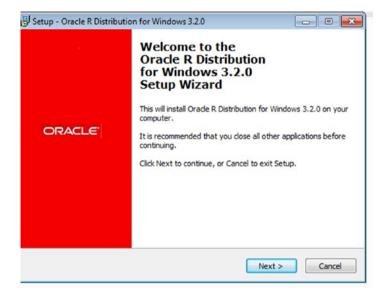


Figure 2-40. Oracle R Distribution setup

The next screen shows the license acceptance; accept the license based on the conditions and continue. Choose the destination folder where it is to be installed (see Figure 2-41).

	acle R Distribution for Win	100WS 3.2.0	
	hould Oracle R Distribution f	for Windows 3.2.0 be instal	led?
	Setup will install Orade R D folder.	istribution for Windows 3.2	0 into the following
To conti	nue, dick Next. If you would	l like to select a different fo	older, dick Browse.
C: Prog	ram Files \R \R -3.2.0		Browse
At least	0.7 MB of free disk space is	required.	
		< Back	Next > Cancel
		< Back	Next > Cancel

Figure 2-41. Select installation folder

CHAPTER 2 INSTALLATION AND HELLO WORLD

The next screen lists the components that are to be installed (Figure 2-42). If you are an advanced user or have open source R installed, clear the components that already exist in your system. However, if you are new to R, select all components for 64-bit User installation and continue by clicking Next.

lect Components Which components shou	Id be installed?	
	you want to install; dear the comp you are ready to continue.	onents you do not want to
64-bit User installation	,,,	-
Core Files		49.4 MB
✓ 64-bit Files		15.8 MB
Message translation	ns	1.3 MB
Current selection require	es at least 67.0 MB of disk space.	

Figure 2-42. Select Components to be installed

The next screen shows the Startup options (Figure 2-43). By default No (accept defaults) is selected. If Yes (customized startup) is selected, the next screens would ask for display options such as multiple document interface (MDI; one big window) or single document interface (SDI; separate windows), type of text for help (text/html), and internet proxy. We can proceed with the default No option unless it is needed to explicitly alter installation settings based on our preference and operating system.

Setup - Oracle R Distribution for Windows 3.2.0	- • •
Startup options Do you want to customize the startup options?	
Please specify yes or no, then dick Next.	
Yes (customized startup)	
 No (accept defaults) 	
< Back N	ext > Cancel

Figure 2-43. Startup options for Oracle R Distribution

The next screen shows the setup options for the program's shortcuts (Figure 2-44). The default folder name is R. However, you can change it to some other name of your choice.

Setup - Oracle R Distribution for Windows 3.2.0	- • •
Select Start Menu Folder Where should Setup place the program's shortcuts?	
Setup will create the program's shortcuts in the To continue, click Next. If you would like to select a dif	
3	Browse
Don't create a Start Menu folder	
< Bac	k Next > Cancel

Figure 2-44. Shortcut name for Oracle R Distribution

CHAPTER 2 INSTALLATION AND HELLO WORLD

The next setup option is selecting additional tasks to be performed (Figure 2-45). Here, you can define your preferences for creating a desktop icon and a quick launch icon for Oracle R. The registry entries allow you to associate the .Rdata file to R and to save the version number in the registry. The .Rdata file is an R workspace file that saves the function and objects created during an open session in R.

	the additional tasks you ution for Windows 3.2.0,		to perform while	e installing Oracle F	2
Additio	nal icons:				
0	eate a <u>d</u> esktop icon				
0	eate a Quick Launch icon	n			
Regist	ry entries:				
V Si	ave version number in reg	gistry			
V A	sociate R with .RData file	es			

Figure 2-45. Additional Tasks for installation

In the final screen (Figure 2-46), it shows all the selected options to be verified prior to installation. Once confirmed, it installs Oracle R in your system.

ormation lease read the following important information before continuing.	
When you are ready to continue with Setup, dick Next.	
Dracle R Distribution includes support that dynamically loads the Intel Math Kernel Library (MKL) installed on your Windows client system. To install MKL, you must have a MKL license.	Â
 Add the location of libOrdBlasLoader.dll and mkl_rt.dll to the PATH system environment variable on the client. 	Е
libOrdBlasLoader.dll is located in the R_HOME directory: By default: "C:\Program Files\R\R-3.2.0\bin\x64"	
In a full MKL 11.1 installation, mkl_rt.dll is located in the Intel MKL Composer XE directory: "C: \Program Files (x86)\Intel\Composer XE 2013 SP"	
2. Start R and execute the function Sys.BlasLapack:	-

Figure 2-46. Final installation checklist

Next, we need to install Oracle R Enterprise Server. It has libraries that augment Oracle Database to accept requests from Oracle R Enterprise Client and support embedded R script execution in the database.

Oracle R Enterprise Server Installation

Unzip the downloaded zipped ORE packages from the Oracle Technology Network R Executables Download Page. Verify supporting and server folders are in the same directory as shown in Figure 2-47. Install the ORE server by executing the server batch file.

server 5/19/2016 5:15 PM File folder supporting 5/19/2016 5:25 PM File folder server.bat 10/22/2015 12:06 Windows Batch File 62 KB	me	Date modified	Туре	Size	
	server	5/19/2016 5:15 PM	File folder		
Server.bat 10/22/2015 12:06 Windows Batch File 62 KB	supporting	5/19/2016 5:25 PM	File folder		
	server.bat	10/22/2015 12:06	Windows Batch File	62 KB	

Figure 2-47. Downloaded ORE server and supporting packages

Enter the required user details in the installation screen as shown in Figure 2-48. The first option that the installer prompts is to enter the permanent and temporary tablespace for RQSYS. RQSYS is the system account for Oracle R Enterprise. It contains the metadata, functions, and procedure to be used by the server. Once the details are entered, it prompts for the ORE user. Enter the credentials for the ORE user. We chose DMUSER, which was previously created for ODM, so that the same schema can use both ODM and ORE together to take advantage of the full technology stack of Oracle Advanced Analytics. However, you can have separate ODM and ORE users. In that case, appropriate system privileges have to be granted to the users for working on each other's object.

C:\windows\system32\cmd.exe	×
Copyright (c) 2012, 2015 Oracle and/or its affiliates. All rights reserved.	-
Checking platform Pass Checking R Pass Checking R libraries Pass Checking ORACLE_HOME Pass Checking ORACLE_SID Pass Checking ORACLE instance Pass Checking ORACLE instance Pass Checking ORE Pass Checking ORE Pass Checking ORE Pass Checking ORE Pass Choosing RQSYS tablespaces PERMANENT tablespace to use for RQSYS [list]: SYSAUX TEMPORRY tablespace to use for RQSYS [list]: TEMP	u
Choosing RQSYS password Password to use for RQSYS: test123	
Choosing ORE user ORE user to use [list]: DMUSER Choosing RQUSER tablespaces PERMANENT tablespace to use for DMUSER [list]: USERS TEMPORARY tablespace to use for DMUSER [list]: TEMP Choosing RQUSER password	
Password to use for DMUSER: test123	-

Figure 2-48. ORE installation screen

The next screen (Figure 2-49) displays the summary of details that were entered by us. If everything is as per plan, press Enter to continue.

```
C:\windows\system32\cmd.exe
                                                                                                           - - X
2-06-22>
R_HOME C:\PRUGRM I\n\n-22 file
R_LIBS_USER D:\app\sddas\product\12.1.0\dbhome_1
ary:C:\Program Files\R\R-3.2.0\library
ORACLE_HOME D:\app\sddas\product\12.1.0\dbhome_1
ORACLE_SID ORACLE_SID
                                                        D:\app\sddas\product\12.1.0\dbhome_1\R\libr
                                                                                                                          =
   Existing R Version
Existing R_HOME
Existing ORE data
Existing ORE code
Existing ORE libraries
                                                        None
                                                        None
                                                        None
                                                        None
                                                       1.4.1
   RQSYS PERMANENT tablespace ...... SYSAUX
RQSYS TEMPORARY tablespace ...... TEMP
   ORE user type .....
                                                       New
DMUSER
   ORE user name
ORE user PERMANENT tablespace ....
ORE user TEMPORARY tablespace ....
                                                        USERS
                                                        TEMP
   Grant RQADMIN role .....
                                                        No
   Operation ...... Install/Upgrade/Setup
Proceed? [yes] yes
```

Figure 2-49. Final ORE installation checklist

Note Use server-help in the command prompt to see various options to update the user-related information, setup new users, or update ORE.

When the server files are successfully installed, the successful messages "Pass" and "Done" appear at the bottom of the screen (see Figure 2-50).

Administrator: C:\Windows\System32\cmd.exe	
RQSYS PERMANENT tablespace RQSYS TEMPORARY tablespace	
ORE user type ORE user name ORE user PERMANENT tablespace ORE user TEMPORARY tablespace Grant RQADMIN role	DMUSER: USERS
Operation	
Proceed? [yes] yes	E
Removing R libraries Installing R libraries Configuring ORE Removing ORE script Creating ORE script Installing supporting packages Granting ORE privileges	Pass Pass Pass Pass Pass
Done	

Figure 2-50. ORE server installation successful messages

Note Verify if the RQADMIN role is granted to DMUSER. If not, grant it by executing server RQADMIN from the server.bat location or use SQLPLUS command GRANT RQADMIN to DMUSER.

Next, we need to install the client and supporting packages in the system to facilitate the Oracle R client system in communicating with the ORE Server. We have installed Oracle Database and ORE server in a single system. However, in organizations, there can be a single server and multiple clients. In those cases, the following steps have to be carried out on every client machine that needs to execute ORE scripts and access the ORE server.

Oracle R Enterprise Client Installation

Run the Oracle R distribution executable from the directory that was entered while installing Oracle R Enterprise. If you are using open Source R as a client interface, then locate the executable from its installation directory. The executable in both cases is located in the BIN folder of the installed software directory. R Graphical User Interface looks like the one Figure 2-51.

CHAPTER 2 INSTALLATION AND HELLO WORLD

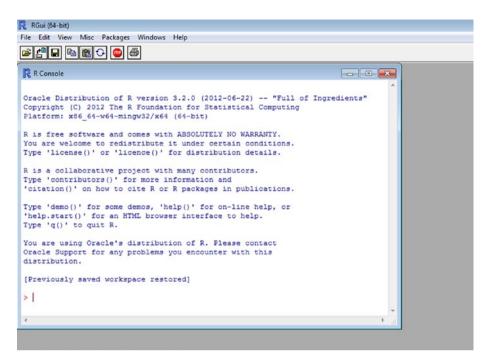


Figure 2-51. R GUI

Note Replace the packages path with the corresponding path of your system's file locations.

To install the client files, you can select either of the two following options:

1. Install packages one by one from the packages menu of the toolbar as shown in Figure 2-52.

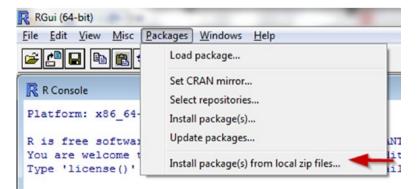


Figure 2-52. Install packages option from R GUI

		Local Disk (F:) ore client	• • • • • • • • • • • • • • • • • • •			۲
Organize 🔻 New fo	lder				····	0
🔶 Favorites	N	ame	Date m	odified	Туре	
E Desktop	200	ORE_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
Downloads		OREbase_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
Secent Places		OREcommon_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
😍 Dropbox	=	OREdm_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
		OREeda_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
🗃 Libraries		OREembed_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
Documents	100	OREgraphics_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
J Music		OREmodels_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
E Pictures	111	OREpredict_1.5	22/10/2	2015 12:06	WinRAR ZI	archiv
Videos		OREstats_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
	111	ORExml_1.5	22/10/2	2015 12:06	WinRAR ZI	P archiv
Computer						
-					_	
File	e name:	ORE_1.5	- A	ll files (*.*)		•

Select the ORE_1.5 package and choose Open as shown in Figure 2-53.

Figure 2-53. Choose client file for installation

When the package is successfully installed, package 'ORE' successfully unpacked and MD5 (Message Digest algorithm 5) sums checked messages appear on the screen (see Figure 2-54).

Figure 2-54. Successful package installation message

This process has to be repeated for all remaining client packages listed in Figure 2-53.

2. Execute the following script for installing all the required client packages together at once. This is the recommended option, as it saves a lot of effort compared to option 1.

CHAPTER 2 INSTALLATION AND HELLO WORLD

```
install.packages("D:/software/ore-client-win-x86 64-1.5/client/ORE 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREbase 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREcommon 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREdm 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREeda 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREembed 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREgraphics 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREmodels 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREpredict 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
OREstats 1.5.zip")
install.packages("D:/software/ore-client-win-x86 64-1.5/client/
ORExml:1.5.zip")
```

The supporting packages can also be installed in the same way as the main ORE client packages.

Install Supporting Packages for the ORE Client

Execute the following script to install supporting packages in the client machine.

```
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
arules_1.1-9.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
Cairo_1.5-8.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
DBI_0.3.1.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
png_0.1-7.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
randomForest_4.6-10.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
ROracle_1.2-1.zip")
install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/
ROracle_1.2-1.zip")
```

When the files are successfully installed, the package is successfully unpacked, and MD5 sums checked messages appear on the screen as in Figure 2-55.

```
R Console
                                                                       - • ×
inferring 'repos = NULL' from 'pkgs'
package 'ORExml' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86 64-1.5/supporting/arules$
inferring 'repos = NULL' from 'pkgs'
package 'arules' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86 64-1.5/supporting/Cairo $
inferring 'repos = NULL' from 'pkgs'
package 'Cairo' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86 64-1.5/supporting/DBI 0.$
inferring 'repos = NULL' from 'pkgs'
package 'DBI' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86 64-1.5/supporting/png 0.$
inferring 'repos = NULL' from 'pkgs'
package 'png' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86 64-1.5/supporting/random$
inferring 'repos = NULL' from 'pkgs'
package 'randomForest' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/ROracl$
inferring 'repos = NULL' from 'pkgs'
package 'ROracle' successfully unpacked and MD5 sums checked
> install.packages("D:/software/ore-supporting-win-x86_64-1.5/supporting/statmo$
inferring 'repos = NULL' from 'pkgs'
package 'statmod' successfully unpacked and MD5 sums checked
>
•
                                111
```

Figure 2-55. Supporting files for ORE client installation

Welcome to the World of Oracle R Enterprise

Execute your first ORE code and verify the installation using the following snippets (see Figure 2-56).

```
#1. Load the ORE library
library(ORE)
#2. Connect to the database using ore.connect(). Replace the parameters with
your Database #credentials
ore.connect(user="DMUSER",sid="ORCL",host="localhost",
password="sibanjan123","1521", all=TRUE)
#3. Invoke standalone ORE function using ore.doEval()
test <- ore.doEval(
function() {
    "Hello World!"
}, ore.connect = TRUE);
#4. Print the result
print(test)</pre>
```

```
R Console
                                                                       - - -
The following objects are masked from 'package:base':
    cbind, data.frame, eval, interaction, order, paste, pmax, pmin,
   rbind, table
Loading required package: OREembed
Loading required package: OREstats
Loading required package: MASS
Loading required package: OREgraphics
Loading required package: OREeda
Loading required package: OREmodels
Loading required package: OREdm
Loading required package: lattice
Loading required package: OREpredict
Loading required package: ORExml
> ore.connect(user="DMUSER",sid="ORCL",host="localhost",password="sibanjan123",$
> test <- ore.doEval(
+ function() {
+ "Hello World!"
+ }, ore.connect = TRUE);
>
> print(test)
[1] "Hello World!"
>
4
```

Figure 2-56. The "Hello World!" program using ORE script

Execute the following code snippets to check embedded database execution of the R scripts from PLSQL (also see Figure 2-57).

```
//1. Create a R script to be stored in the database's R repository
identified by script name test_plsql
begin
sys.rqScriptCreate
('test_plsql','function() {"Hello World!"}');
end;
/
//2. Invoke the previosuly stored R script(test_plsql) using rqEval and
return the result as an XML file
select name, value
from table(
1rqEval
(
NULL,
```

```
'XML',
'test_plsql'));
```

<pre>B begin sys.rqScriptCreate ('test_plsql','function(end; / B select name, value</pre>) ("Hello World:")');	
from table(rgEval	🐻 View Value	
(IVDLL, IVD		
NAME VALUE I (null) <root><vector_obj><r< td=""><td></td><td></td></r<></vector_obj></root>		

Figure 2-57. Invoke ORE script using SQL statement

ORE Data Dictionary

The data dictionary for ORE (Table 2-4) provides information on the R scripts stored in the database. Also, it has database tables that can be queried for managing the datastores.

Table 2-4. ORE Data Dictionary

rq\$script	Table that lists all the R scripts stored in the database. This table has to be queried from the SYS schema
sys.rq_scripts	A view that lists the R scripts that are present for RQSYS schema
RQUSER_DATASTORELIST	A view that lists all datastores for the current schema
RQUSER_DATASTORECONTENTS	A view that provides object-level information for all datastores in the current schema

Summary

This was a foundation chapter for using Oracle Advanced Analytics for your data science projects. In this chapter, you learned to install Oracle Data Miner and Oracle R Enterprise. We also looked at the various components of Oracle Data Miner GUI and discussed data dictionaries. Knowing data dictionaries is crucial, as they are needed to manage the data mining models. I also showed some of the basic steps to kick-start a data mining workflow, execute a ORE script, and run a PLSQL embedded R script. The purpose of this chapter was to provide you with building blocks to start using Oracle Advanced Analytics. In the following chapters, I deep dive into each of the techniques in data science. In the next chapter, I discuss the clustering method, which is a technique to group similar sets of data together.

CHAPTER 3

Clustering Methods

Mobile and tablet devices and easy access to the Internet are making the world go digital. Retail business is no longer confined to brick and mortar stores. There are multiple channels through which business is carried out. Some consumers prefer to shop using mobile or web applications; but they never stop visiting brand stores. At each touch point, customers leave their footprints and are captured through different attributes. There are thousands of attributes for millions of customers. It is tough to understand each of them personally. Tracking these customers and segmenting them into different groups is becoming increasingly difficult. So how do we segment our customers to target them for a promotional activity? There is an opportunity for you to use clustering techniques to segment your customers. Clustering techniques can group attributes into a few homogeneous segments where data within each group are similar to each other and different across groups. It is an unsupervised learning process finding logical relationships and patterns from the structure of the data. Clustering finds its application in data mining, information retrieval, image segmentation, and grouping similar web pages and is used across industries. It can be utilized for

- Customer segmentation where a set of homogeneous customers are grouped together
- Industry analysis to find a group of similar firms
- Social network analysis to find a coherent group of friends
- Grouping text documents to assign them a category
- Detect fraud in transactions

And much more....

In this chapter, I will discuss the following topics:

- Concepts and approaches for cluster analysis
- *k*-means algorithm fundamentals
- *k*-means algorithms in Oracle Advanced Analytics
- Clustering rules evaluation metrics
- Creating clusters using Oracle SQL and PLSQL APIs

- Creating clusters using Oracle R Enterprise
- Creating clusters using Oracle SQL Developer GUI
- Walk through a clustering case study—Customer segmentation

Clustering Approaches

There are various methods to cluster data together. It can be as simple as filtering data based on certain attributes such as grouping customers based on their age group or using mathematical algorithms to allow data to form clusters automatically. Sometimes both the approaches can be employed together to provide a more robust solution. Later in this chapter, my case study is based on a scenario where both these clustering approaches are used simultaneously to formulate a customer segmentation strategy for an organization.

The following is a brief of the types of clustering algorithms and their implementation in Oracle Advanced Analytics:

 Hierarchical method: In this method, a hierarchy of clusters is formed based on the distance between pairs of data points. It starts with one record and iteratively pairs them together until a single cluster is found. The clusters form a tree-like structure and can be visualized through a dendrogram plot. The process of finding clusters in this method is resource intensive but allows one to choose the number of clusters by visualizing the cluster results.

Oracle Advanced Analytics doesn't have this method as a separate algorithm. However, it has implemented it as an enhancement for all of its clustering algorithms. For example, users can take advantage of the clusters formation process of a distance-based clustering algorithm such as k-means and visualize the clusters in a tree structure as in a hierarchical method.

2. **Density-based technique:** This method finds the cluster by using specific probability distribution of the data points. The idea here is to continue growing the clusters as long as the density in the neighborhood exceeds a specified threshold. The high-density regions are marked as clusters separated from low-density regions, which might be noise. Noise is a random error or variation in a data set that is statistically uncertain and cannot be explained.

Oracle Advanced Analytics implements the expectation maximization algorithm, a variant of the density technique wherein the expectation step computes the likelihood of cluster membership based on the overall probability of data. In the maximization step, it tries to maximize the overall probability or likelihood of the clusters. 3. *Grid-based method*: This method operates by dividing the attributes of a data set into hyper-rectangular grid cells. It then eliminates low-density cells that are below a specified threshold parameter. The adjacent high-density cells are then combined until the objective function is minimized. The resulting cells are interpreted as clusters.

Oracle implements its proprietary grid-based algorithm, O-Cluster, which creates orthogonal partitions for the attributes in the data set to form grids. The algorithm does not use all the data passed as its input. It reads the data in batches, and based on statistical tests decides if there are more clusters to be discovered. This causes its processing time to be faster than any other algorithm.

4. *Partition-based methods*: In a partitioning method, data is divided into partitions based on the distances between the data points; the *k*-means algorithm is a widely used partitioning type of clustering. In a partition-based clustering method, choice of the appropriate distance function influences the shape of clusters. Euclidean, cosine distance, and fast cosine distances are three distance functions available in Oracle Advanced Analytics for *k*-means algorithms. Euclidean distance is mostly sensitive to the scale of the input vectors. In such cases, one has to normalize the scale of input vectors or choose a scale-insensitive distance measure such as cosine distance.

Oracle has implemented an enhanced version of the k-means algorithm; it is a popular clustering algorithm and is widely used across industries. For this reason, I will discuss the k-means algorithm in the following section at greater depth. Although I limit this discussion to k-means, the other two algorithms present in Oracle Advanced Analytics can be run in a similar way with some changes in their input setting parameters. The objective here is to introduce you to the methodology used to implement a clustering algorithm using the Oracle Advanced Analytics platform.

Oracle data miner of the Oracle Advanced Analytics platform implements three algorithms—k-means, O-Cluster, and Expectation Maximization. However, they cover all four widely used types of clustering in industries. The hierarchical method is common and implemented for the three algorithms supported in Oracle Advanced Analytics.

The k-means Algorithm

The *k*-means is a simple algorithm that divides the data set into *k* partitions for *n* objects where $k \le n$. In this method, the data set is partitioned into homogeneous groups with similar characteristics. The similarity or dissimilarity is defined by calculating

CHAPTER 3 CLUSTERING METHODS

the distance between the centroid and data points. The clusters are formed when the optimization function for the algorithm achieves its objective—less intracluster distances and more intercluster distances.

Note Optimization function is used to achieve an algorithm's objective along with minimizing the cost or error associated with learning the training data. For algorithms that are based on some reward system, the optimization function is maximized.

The following steps are involved in traditional k-means clustering:

- 1. Specify the number of clusters and metrics to calculate the distance
- 2. Randomly pick the initial centroid per number of clusters
- 3. For each data point
 - a. Calculate the distance between the centroid and data points
 - b. Assign each data point to the nearest centroid of a cluster
- 4. Calculate the new centroid for each cluster
- 5. Repeat steps 3 and 4 until the centroids in clusters change. Terminate when they remain unchanged in successive cluster reassignments.

Consider the following example in Figure 3-1 where we want to cluster five students into two groups based on their history and geography scores.

History	Geography
84	49
69	33
67	37
78	45
81	. 49

Figure 3-1. History and Geography scores

As this is a two-dimensional data set, we plot the history and geography scores for each student in the x and y axis, respectively. We can visualize two prominent clusters from the graph (see Figure 3-2). Let's run this data through the *k*-means algorithm and find out the cluster results.

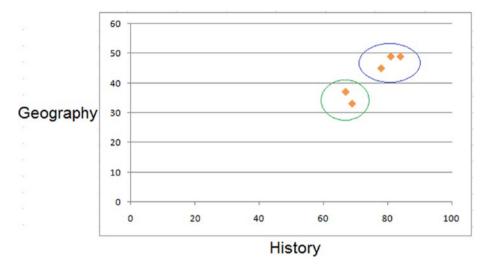


Figure 3-2. Two-dimensional plot student's scores

STEP 1: Specify the number of clusters and metrics to calculate the distance.

As we intend to find two clusters in our sample data set, we set number of clusters (k) = 2. Assuming the marks are in the same unit and scale, we choose Euclidean distance as the metric for calculating distance. Euclidean distance between a point (x1,y1) and the centroid (cx1,cy2) is given by the following:

dist((x1,y1),(cx2,cy2)) = sqrt((x1-cx2)2+(y1-cy2)2

STEP 2: Algorithm finds the initial centroid.

As we are doing the k-means calculation manually, we randomly choose the first two records to be the initial centroids (see Figure 3-3).

Cluster	li	nitial Centroid
	History	Geography
c1	84	49
c2	69	33

Figure 3-3. Initial centroids

STEP 3: Calculate the distance between the centroid and each data point.

CHAPTER 3 CLUSTERING METHODS

Using the Euclidean formula given in the equation, we calculate the distance of each data point from each cluster. The closest cluster centroid was assigned a cluster for the respective data point (Figure 3-4).

History	Geography	Distance from cluster 1	Distance from Cluster 2	Cluster Assignment
84	49	0	21.9317122	1
69	33	21.9317122	0	2
67	37	20.80865205	4.472135955	2
78	45	7.211102551	15	1
81	49	3	20	1

Figure 3-4. Cluster assignment

.

STEP 4: The new centroid/mean for each cluster is recalculated (Figure 3-5).

Cluster	New centroid	
	History	Geography
c1	81	47.66666667
c2	68	35

Figure 3-5. New centroid

.

STEP 5: The distance between data points and cluster centroids are again calculated. As the cluster assignment doesn't change, we get our two final clusters. If we compare the clusters in the plot and in Figure 3-6, we find the *k*-means algorithm has discovered the same clusters.

History	Geography	Distance from cluster 1	Distance from Cluster 2	Cluster Assignment
84	49	3.282952601	21.26029163	1
69	33	18.9502272	2.236067977	2
67	37	17.60050504	2.236067977	2
78	45	4.01386486	14.14213562	1
81	49	1.333333333	19.10497317	1

Figure 3-6. Cluster assignment after recalculating new centroids

k-means in Oracle Advanced Analytics

Oracle has enhanced the functionality of the *k*-means algorithm to drive automation. Some of its features that beat out the traditional *k*-means algorithm are outlined following:

- Builds *k*-means in an hierarchal fashion
- The traditional *K*-means algorithm works only on numeric data; in Oracle Advanced Analytics, it is designed to handle both numeric and categorical variables
- Uses probabilistic scoring of data for cluster assignments
- Provides rules that describe data in each cluster
- Provides real-time scoring for cluster membership of a new data set
- As *k*-means is outlier sensitive, the automatic data preparation (ADP) module for *k*-means performs outlier-sensitive normalization; to use this feature, ADP should be set to TRUE while configuring the algorithm.
- Using this algorithm, users need not create multiple *k*-means models to arrive at an optimal value for *k*; instead, they can decide the value after the first run itself

Clustering Rules Evaluation Metrics

Each cluster is described by certain rules that explain its data. To evaluate the accuracy of the rules, Oracle Advanced Analytics is equipped with two parameters—Support and Confidence:

- Support describes the percentage of records for which the rule holds true.
- Confidence is the probability that a particular record will be assigned to the top rule that describes the cluster.

Parameters to Tune k-means Clustering

As a data scientist, you are required to work on different data sets and might be using the same algorithm for the assignments. However, as per the task and data set, you may need to tweak certain parameters to achieve an optimal number of clusters. Oracle has provided eight parameters to tune the *k*-means algorithm. It has assigned all parameters with some standard values and can be overridden by specifying the accepted values for each parameter (see Table 3-1).

Parameter	Default Value	Function It Performs
Number of clusters	10	To set the required number of clusters.
Growth factor	2	To allocate memory for holding cluster data; it can range from 1 to 5.
Convergence tolerance	0.01	For setting the error tolerance level; it ranges from 0.001 to 1. The lower the value, the more optimal clusters are formed but with an overhead of higher processing time.
Distance function	Euclidean	To choose any of three distance functions for cluster calculations— Euclidean, cosine, and fast cosine.
Number of iterations	3	To set the maximum number of iterations for the clustering algorithm; the model builds faster with a small number of iterations. However, the result might not be optimal.
Minimum percent attribute rule support	0.1	Used to specify a threshold for attributes to qualify as a rule in the cluster; it ranges from 0 to 1.
Number of histogram bins	10	This algorithm uses the equi-width bin to discretize continuous variables.
Split criterion	Variance	Criteria to split a cluster further; it is used to initialize a <i>k</i> -means cluster. The parameter accepts only one of the two values—variance and size. Split by variance partitions the cluster with most spread out data; split by size partitions the cluster having largest area.

Table 3-1. Parameters to Tune k-Means Clustering in Oracle Advanced Analytics

Creating a Cluster Model in Oracle Advanced Analytics

The beauty of using Oracle Advanced Analytics is that its algorithms can be utilized by a business analyst who is not familiar with programming, a database programmer who knows only SQL/PLSQL, and a statistician who is more acquainted with only R language. In this section, I walk you through the different available methods to create a cluster model using PLSQL API, R scripts, and SQL developer user interface (UI).

Note The data for the following examples can be found in the book's companion folder. The data set used is the Iris flower data set, which is a multivariate data set introduced by Ronald Fisher. The data set has 50 samples from each of three species of Iris. Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.

Clustering using SQL and PLSQL

STEP 1: Create a setting table

The setting table is necessary to override the default values for the model-setting parameters. You can skip this step if you are creating the model with Oracle-provided default values.

```
-- Create Settings tables to be used in model building
CREATE TABLE odm km settings (
   setting name VARCHAR2(30),
   setting value VARCHAR2(4000));
-- Insert settings
SET SERVER OUTPUT ON;
BEGTN
   INSERT INTO odm km settings (setting name, setting value) VALUES
   (dbms data mining.kmns distance.dbms data mining.kmns euclidean);
   INSERT INTO odm km settings (setting name, setting value) VALUES
   (dbms data mining.prep auto,dbms data mining.prep auto off);
   INSERT INTO odm km settings (setting name, setting value) VALUES
   (dbms data mining.CLUS NUM CLUSTERS,3);
   -- Other examples of overrides are:
   -- (dbms data mining.kmns iterations,3);
   -- (dbms data mining.kmns block growth,2);
   -- (dbms data mining.kmns conv tolerance,0.01);
   -- (dbms data mining.kmns split criterion,dbms data mining.kmns variance);
   -- (dbms data mining.kmns min pct attr support,0.1);
   -- (dbms data mining.kmns num bins,10);
END;
/
```

STEP 2: Create the mining model

To create the clustering model, you need to call the CREATE_MODEL procedure of the DBMS_DATA_MINING package with the parameters shown in Table 3-2.

Parameter	Mandatory	Description
model_name	Yes	To assign a meaningful name for the clustering model.
mining_function	Yes	The data mining function that is to be used; for clustering, you need to call the dbms_data_mining. clustering function.
data_table_name	Yes	Name of the data table/view to be used to create the model.
case_id_column_name	No	The unique record identifier for the data set; the primary key of a table can be used as a case id column. If there is no unique ID column, it can be set to null. However, the processing time for building the model might be more.
settings_table_name	No	Name of the table that contains the model settings values. If null is passed to this parameter, the model will process with default values

Table 3-2. Parameters for Creating a Clustering Model Using DBMS_DATA_MINING.CREATE_MODEL

The syntax for creating new clustering model is as follows:

```
BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => 'KM_ODM_MODEL',
mining_function => dbms_data_mining.clustering,
data_table_name => 'XXCUST_IRIS_DATA_V',
case_id_column_name => 'ID',
settings_table_name => 'odm_km_settings');
END;
/
```

STEP 3: Check if the model is created successfully (see Figure 3-7)

select * from user_mining_models where model_name = 'KM_ODM_MODEL'

Script Output X Query Result X					
📇 🝓 🍺 SQL All Rows Fetched: 1 in	0.022 seconds				
I MODEL_NAME	ALGORITHM	CREATION_DATE	BUILD_DURATION	MODEL_SIZE	COMMENTS

Figure 3-7. User mining model record

STEP 4: Check the data attributes (Figure 3-8) that were used to create the model

```
SELECT attribute_name, attribute_type
    FROM user_mining_model_attributes
    WHERE model_name = 'KM_ODM_MODEL'
    ORDER BY attribute name;
```

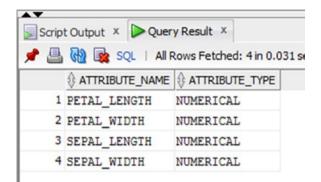


Figure 3-8. Model settings for a k-means clustering model

STEP 5: Result evaluation

You need to call function GET_MODEL_DETAILS_KM of DBMS_DATA_MINING package to get model details and rules for each cluster.

select DBMS_DATA_MINING.GET_MODEL_DETAILS_KM('KM_ODM_MODEL') from dual

-	View	Val	110	
	VICW	V G	ue	

S	YS.DM_CLUSTERS
s	YS.DM_CLUSTER(1,'1', 152,NULL,1,4.6296429189750699,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(2),SYS.DM_CHILD(3)),SYS.DM_CENTROIDS(SYS.
s	YS.DM_CLUSTER(2,'2',96,1,2,1.2359570312500101,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(4),SYS.DM_CHILD(5)),SYS.DM_CENTROIDS(SYS.DM_
5	YS.DM_CLUSTER(3,'3', 56, 1, 2, 0. 74465880 102041304, NULL, SYS.DM_CHILDREN(SYS.DM_CHILD(6), SYS.DM_CHILD(7)), SYS.DM_CENTROIDS(SYS.DM
5	YS.DM_CLUSTER(4,'4', 36,2,3,0.6229166666666674,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(12),SYS.DM_CHILD(13)),SYS.DM_CENTROIDS(SYS.DM
5	YS.DM_CLUSTER(5,'5',60,2,3,0.51890555555555555395,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(14),SYS.DM_CHILD(15)),SYS.DM_CENTROIDS(SYS.D
,	YS.DM_CLUSTER(6,'6', 25,3,3,0.179165680473369,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID(PETA
5	YS.DM_CLUSTER(7,7,31,3,3,0.86424557752340603,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(8),SYS.DM_CHILD(9)),SYS.DM_CENTROIDS(SYS.DM
5	YS.DM_CLUSTER(8,'8',4,7,4,0.073749999999999998594,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(10),SYS.DM_CHILD(11)),SYS.DM_CENTROIDS(SYS.I
2	YS.DM_CLUSTER(9,'9', 27,7,4,0.35473251028806602,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(18),SYS.DM_CHILD(19)),SYS.DM_CENTROIDS(SYS.I
5	YS.DM_CLUSTER(10,10',3,8,5,0.03999999999999999992,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID(PET
5	YS.DM_CLUSTER(11,'11', 1,8,5,0,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID(PETAL_WIDTH',NULL, 1
5	YS.DM_CLUSTER(12,'12',12,4,4,0.387916666666666702,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(16),SYS.DM_CHILD(17)),SYS.DM_CENTROIDS(SY
s	YS.DM_CLUSTER(13,'13',24,4,4,0.227604166666662,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID)
5	YS.DM_CLUSTER(14,'14',36,5,4,0.31817901234568302,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID)
5	YS.DM_CLUSTER(15,'15',24,5,4,0.2174652777777899,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID)
5	YS.DM_CLUSTER(16,'16',3,12,5,0.1977777777778299,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID)
	YS.DM_CLUSTER(17,17,9,12,5,0.26049382716049901,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID
5	YS.DM_CLUSTER(18,'18',21,9,5,0.092725000000001501,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID
s	YS.DM_CLUSTER(19,19',6,9,5,0.823888888888888701,NULL,SYS.DM_CHILDREN(SYS.DM_CHILD(NULL)),SYS.DM_CENTROIDS(SYS.DM_CENTROID(1))

Figure 3-9. Clustering model results

23

CHAPTER 3 CLUSTERING METHODS

The result is available in the table data type format, which looks a bit messy (see Figure 3-9). We need to use the SQL table type data manipulation functions to convert it into a readable format. The following is an example to view the rules in a readable format for the leaf nodes (see also Figure 3-10).

■ **Note** As Oracle prepares *k*-means in a hierarchical fashion, the leaf nodes are the final clusters. Leaf nodes are those nodes where the clustering process stops and doesn't have a child node. The number of leaf nodes is defined by the model-setting parameter: number of clusters. For example, if number of leaf nodes is set to 3, then the final number of clusters is 3.

```
SELECT model.id rule_id,
    antecedent.attribute_name aname,
    antecedent.conditional_operator operator,
    NVL(antecedent.attribute_str_value,ROUND(antecedent.attribute_num_
    value,4)) value,
    model.rule.rule_support support,
    model.rule.rule_confidence confidence
FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_KM('KM_ODM_MODEL')) model,
    TABLE(model.rule.antecedent) antecedent,
    TABLE(model.child) chl
    where chl.id is null
ORDER BY model.id,support, confidence desc;
```

		QL All Rows Fet	chea: 24 in 0.0.	38 seconds	5	
	RULE_ID	ANAME	OPERATOR	VALUE	SUPPORT	CONFIDENCE
1	3	SEPAL_LENGTH	<=	5.78	42	0.80769230769230804
2	3	PETAL_WIDTH	>=	.1	42	0.80769230769230804
3	3	PETAL_WIDTH	<=	.34	42	0.80769230769230804
4	3	SEPAL_LENGTH	>=	4.19	42	0.80769230769230804
5	3	SEPAL_WIDTH	<=	3.92	42	0.80769230769230804
6	3	SEPAL_WIDTH	>=	2.96	42	0.80769230769230804
7	3	PETAL_LENGTH	<=	2.18	42	0.80769230769230804
8	3	PETAL_LENGTH	>=	1	42	0.80769230769230804
9	4	SEPAL_WIDTH	<=	3.44	34	0.89473684210526305
10	4	PETAL WIDTH	>=	1.78	34	0.89473684210526305

Figure 3-10. Readable rules for k-means cluster rules

Note GET_MODEL_DETAILS_EM and GET_MODEL_DETAILS_OC are the model details API for Expectation Maximization and O-Cluster clustering models.

Clustering using Oracle R Enterprise

You need to boot up the R client console and follow the following steps for creating clusters using Oracle R Enterprise.

STEP 1: Load the ORE library. This command loads the Oracle R basic functionality packages present in the ORE library to the R environment.

library(ORE)

STEP 2: Use ore.connect to connect to the database

```
ore.connect(user = "dmuser", sid = "ORCL", host = "localhost", password =
"sibanjan123",port = 1521)
```

STEP 3: Use ore.sync to synchronize the metadata in the database schema with R environment. In the following code, the ore.sync function creates an ore.frame object that is a proxy to the XXCUST_IRIS_DATA database table.

ore.sync("DMUSER","XXCUST_IRIS_DATA",use.keys=TRUE)

STEP 4: Use ore.get to get the proxy ore.frame for the table XXCUST_IRIS_DATA and assign it to an R variable.

a<-ore.get("XXCUST_IRIS_DATA", schema="DMUSER")</pre>

STEP-5: The ore.ls function lists all the proxy database objects available for the current environment.

ore.ls()

STEP 6: Create the KMeans model by invoking the ore. odmKmeans function. It accepts all the parameters and default values that were described in the Table 3-1.

km.iris<- ore.odmKMeans(~., a,num.centers=3, auto.data.prep=FALSE)</pre>

STEP 7: Result evaluation

Use the summary function to see the model summary results (Figure 3-11), which includes the model settings and centroid of the model cluster.

summary(km.iris)

CHAPTER 3 CLUSTERING METHODS

```
R Console
                                                                                 -
>
    summary (km.iris)
Call:
ore.odmKMeans(formula = ~., data = a, auto.data.prep = FALSE,
    num.centers = 3)
Settings:
                           value
clus.num.clusters
                                 3
                2
9.01
euclidean
block.growth
conv.tolerance
distance
iterations
                              0.1
min.pct.attr.support
                               10
num.bins
split.criterion variance
prep.auto
                              off
Centers:
    ID SEPAL LENGTH SEPAL WIDTH PETAL LENGTH PETAL WIDTH centersB[, -1L]
2 123.0 6.383051 2.964407 5.218644 1.8779661 Iris-virginica
4 68.5 5.854000 2.874000 3.930000 1.1980000 Iris-versicolor
5 22.0 5.009302 3.409302 1.451163 0.2348837 Iris-setosa
                                                                                              E
> |
4
```

Figure 3-11. Model results

Every cluster formed has some common characteristics that are defined as rules by the clustering algorithms to uniquely identify each cluster. To view these rules, you can use the R rules function as shown in Figure 3-12.

rules(km.iris)

1 152 1 136 0.8947368 CLASS 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 0.250	R	R Console					-0-	×
1 152 1 136 0.8947368 CLASS 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 0.250		rhs.cluster.id	rhs.support i	chs.conf	lhs.support	lhs.conf	lhs.var	1
1 152 1 136 0.8947368 CLASS 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 <t< td=""><td>1</td><td>1</td><td>152</td><td>1</td><td>136</td><td>0.8947368</td><td>CLASS</td><td></td></t<>	1	1	152	1	136	0.8947368	CLASS	
1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 0 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 0.2500000 IN Inis-versicolor 151 0.2500	2	1	152	1	136	0.8947368	CLASS	
1 152 1 136 0.8947368 ID 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 0.2500000 IN Iris-setosa 152<	3	1	152	1	136	0.8947368	CLASS	
1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate 151 0.2500000 IN Iris-setosa 152 0.00000000 <=	5	1	152	1	136	0.8947368	ID	
1 152 1 136 0.8947368 PETAL_LENGTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 0 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate 151 0.2500000 IN Iris-versicolor 152 0.25000000 <=	4	1	152	1	136	0.8947368	ID	
1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 0.2500000 IN Iris-versicolor 151 0.2500000 <=	7	1	152	1	136	0.8947368	PETAL LENGTH	
1 152 1 136 0.8947368 PETAL_WIDTH 1 152 1 136 0.8947368 SEPAL_LENGTH 0 1 152 1 136 0.8947368 SEPAL_LENGTH 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_LENGTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate 151 0.2500000 IN Iris-versicolor 152 0.0000000 <=	6	1	152	1	136	0.8947368	PETAL LENGTH	
1 1 152 1 136 0.8947368 SEPAL_LENGTH 0 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_WIDTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate SEPAL_WIDTH 151 0.2500000 IN Iris-versicolor SEPAL_SEPAL_SEPAL_WIDTH 152 0.0000000 <=	9	1	152	1	136	0.8947368	PETAL WIDTH	
0 1 152 1 136 0.8947368 SEPAL_LENGTH 3 1 152 1 136 0.8947368 SEPAL_VIDTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support lhs.var.conf predicate 151 0.2500000 IN Iris-setosa 151 0.2500000 IN Iris-versicolor 151 0.2500000 V = 152 152 0.0000000 <= 152 152 0.0000000 >= 1 147 0.333333 <= 1 152 0.300000 <= 2.5 152 0.300000 >= 0.1 144 0.2500000 <= 7.37	в	1	152	1	136	0.8947368	PETAL WIDTH	ŕ
3 1 152 1 136 0.8947368 SEPAL_WIDTH 2 1 152 1 136 0.8947368 SEPAL_WIDTH 1hs.var.support 1hs.var.conf predicate SEPAL_WIDTH 151 0.2500000 IN Iris-setosa 151 0.2500000 IN Iris-versicolor 151 0.2500000 IN Iris-virginica 152 0.0000000 >= 1 152 0.0000000 >= 1 147 0.3333333 >= 1 152 0.3000000 <= 2.5	11	1	152	1	136	0.8947368	SEPAL LENGTH	
2 1 152 1 136 0.8947368 SEPAL_WIDTH lhs.var.support lhs.var.conf predicate 151 0.2500000 IN Iris-setosa 151 0.2500000 IN Iris-versicolor 151 0.2500000 IN Iris-versicolor 152 0.0000000 <=	10	1	152	1	136	0.8947368	SEPAL LENGTH	1
lhs.var.support lhs.var.conf predicate 151 0.2500000 IN Iris-setosa 151 0.2500000 IN Iris-versicolor 151 0.2500000 IN Iris-versicolor 152 0.0000000 <= 152	13	1	152	1	136	0.8947368	SEPAL WIDTH	Î
151 0.2500000 IN Iris-setosa 151 0.2500000 IN Iris-versicolor 151 0.2500000 IN Iris-virginica 152 0.0000000 <= 152	12	1	152	1	136	0.8947368	SEPAL WIDTH	
151 0.2500000 IN Iris-versicolor 151 0.2500000 IN Iris-virginica 152 0.0000000 <= 152		lhs.var.support	lhs.var.conf	E 1	predicate	2		
151 0.2500000 IN Iris-virginica 152 0.0000000 <= 152		151	0.2500000) I!	Iris-setos	2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	151	0.2500000	IN Ir:	is-versicolo	c		
152 0.0000000 >= 1 147 0.3333333 <= 6.31	3	151	0.2500000	IN I:	ris-virginica	4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	152	0.0000000)	<= 152	2		
147 0.3333333 >= 1 152 0.3000000 <= 2.5	1	152	0.0000000)	>= :	1		
152 0.3000000 <= 2.5	7	147	0.3333333	3	<= 6.3	1		
152 0.3000000 >= 0.1 1 144 0.2500000 <= 7.37	5	147	0.3333333	3	>= :			
152 0.3000000 >= 0.1 1 144 0.2500000 <= 7.37	9	152	0.3000000)	<= 2.5	5		
1 144 0.2500000 <= 7.37	8	152	0.3000000)	>= 0.1	1		
	11)				

Figure 3-12. Cluster rules detail

The results from this model can also be retrieved from the SQL environment using DBMS_DATA_MINING.GET_MODEL_DETAILS_KM function that I described in an earlier section. The ORE model gets stored with an ORE specific internal name (Figure 3-13). This name is required to be passed as a parameter to the model details PLSQL API to retrieve the results in an SQL environment. The internal name can be found by executing the following command in the R environment.

km.iris\$name

```
> km.iris$name
[1] "ORE$18_20"
> |
```

Figure 3-13. Internal ORE model name

You can use the preceding extracted name in the model details PLSQL API to retrieve the results in the Oracle SQL environment (Figure 3-14).

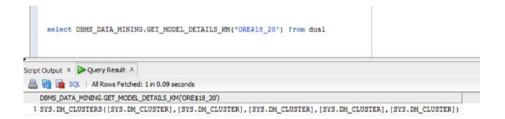


Figure 3-14. ORE model results in the SQL environment

STEP 8: Sometimes it is necessary to keep the model in a data store to reuse it anytime later. It is an optional step but is recommended for the model reusability.

ore.save(km.iris, name="km_ore_cluster_iris", overwrite=TRUE)

Creating a cluster model using SQL Developer

A clustering model can be created from the data mining option in SQL developer. This needs no coding and is suitable for business analysts who are not acquainted with programming. Refer to the steps discussed in Chapter 2 to create a new project and workflow. Once a new workflow is created, follow the steps given here to create a cluster model in SQL Developer.

STEP 1: Define a data source to be used for creating a clustering model (Figure 3-15). Drag the data source node from the data section of the components panel to the worksheet.

Figure 3-15. Data Source node in ODM workflow

STEP 2: Select the view DMUSER.XXCUST_IRIS_DATA_V for the data source as shown in Figure 3-16.

elect Table		
Select Table	Available Tables/Views:	Q~ UST_IRIS_DATA_V ×
Select Columns	▲ Name	Туре
	DMUSER.XXCUST_IRIS_DATA_V	VIEW
	✓ Include Tables from Other Schemas	Edit Schemas

Figure 3-16. Define Data Source

STEP 3: Select and drag clustering to the worksheet from the Model section in Components editor. Connect the Data Source node and Clustering node as shown in Figure 3-17.

Figure 3-17. Connect XXCUST_IRIS_DATA_V and Clust Build node

STEP 4: For a new cluster node, all three available algorithms get defaulted for execution. As we want to perform only *k*-means clustering, we can remove the other two algorithms from the list. Right-click the cluster node and select Edit to change the model settings (see Figure 3-18).

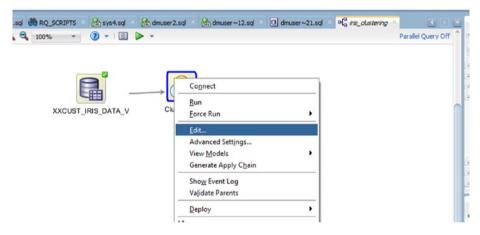


Figure 3-18. Edit Clust Build node

STEP 5: From the algorithm section, select O-Cluster and press the delete option as shown in Figure 3-19. Repeat the same for the Expectation Maximization algorithm.

uld Input Text Case ID: <none></none>	•		
Model Settings			+ / × 9
Name	Algorithm	Date	Data Usage
CLUS_KM_2_5	K-Means	5/31/16 12:49 AM	퍵
CLUS_OC_1_5	O-Cluster	5/31/16 12:49 AM	
CLUS_EM_1_5	Expectation Maximization	5/31/16 12:49 AM	
	Are you sure you v	ant to delete the model?	
		Yes b	40

Figure 3-19. Remove models except K-Means algorithm

STEP 6: Run the workflow by pressing the play button at the top of the worksheet as shown in Figure 3-20.

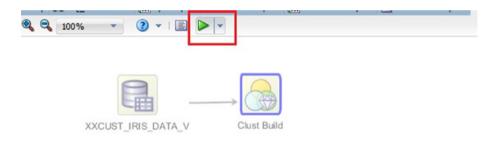


Figure 3-20. Execute the workflow

STEP 7: Result evaluation

To view the results, right-click on the Clust Build node and select the model from the view model option. Once the model result appears on the screen, clusters are shown in a hierarchy (see Figure 3-21). Click a node of the tree to see the corresponding rule for that cluster, which appears at the rule section at the bottom of the screen. You can also view the centroid of the currently selected cluster. A centroid is the most probable value for that cluster.

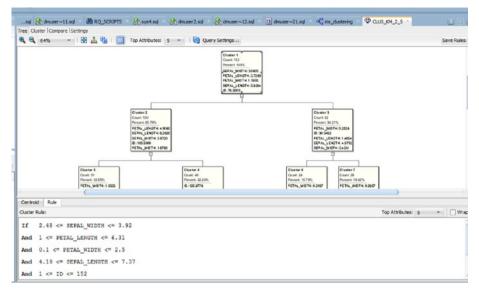


Figure 3-21. Clusters hierarchy

Note In the following case study, you will see the methods to interpret, validate, and store the result of a cluster model in the database.

Case Study—Customer Segmentation

For a company to be successful, it is important to understand their customer's needs and not exhaust their budget by advertising their products to each customer. Every customer is different but has one or more characteristics in common that they exhibit for the product needs. Companies need to find these hidden attributes and design custom programs that are unique to each group. This process to divide customers into similar and identifiable segments is known as customer segmentation. The consumers find tailored promotional events relevant to their needs, and it encourages them to tap this opportunity. As a by-product, personalized promotions are highly valued by them, and this leads to better customer loyalty. For organizations, this earns higher returns than targeting each and every customer. Also, organizations need to be cost-effective and target those customers where they can increase their revenue. Adding more to the costs that bring down the profit doesn't serve the purpose of a promotional activity until and unless there is some tertiary benefit attached to it. Organizations need to prioritize their customers to derive value out of them. They need to design an efficient segmentation process that overlaps internal constraints and customer's needs. Also, it is essential that the analytical CRM (Customer Relationship Management) system should automatically assign a segment to a new customer when they are acquired. This helps to avoid the recurring costs of doing the customer segmentation exercise each and every time.

In this section, we design a customer segmentation process for a high-tech store Sant Enterprises. Sant Enterprises has experienced low footfalls in the last quarter. They have asked their marketing team to start promotions to increase their store's footfall and also increase revenue. You have been assigned as an analytics consultant for this project.

Business understanding

You start discussing with the marketing team to understand what Sant Enterprises' pain points are and the target they want to achieve. From the discussion, you understand that Sant Enterprise has experienced fewer customers and lost revenue in the last quarter. They have had a dip in their profits, and this has had a bad impact in their quarterly financial statement. The management is quite unhappy with the marketing team and has warned them of bitter consequences if nothing gets changed in the current quarter. They have also asked the marketing team to cut their expenses to compensate for the loss and stabilize the year-end financial report. Based on the business scenario, you decide the marketing team should target their existing GOLD customers who had been their frequent buyers and high revenue earners but have recently not visited their stores. You plan the project as follows:

- Segment the customers by a value-based approach using RFM (recency, frequency, monetary) methodology. It is a method to analyze customer value by computing a score for each customer. The scores help identify high-response customers who can contribute to improving the overall response rate of a marketing campaign.
- Filter the GOLD customers based on their RFM score.
- Further segment these GOLD customers to cluster them into homogeneous groups based on their profile and purchase history.
- Understand the important customer attributes and rules that define each cluster. This would provide the marketing team with inputs for personalized promotional offers.
- Store this result back to the operational database for the marketing team to integrate with their CRM system.
- Implement real-time segment assignment when a new customer arrives.

Data understanding

The marketing team liked your approach of solving the problem and provided access to their CRM database. You need to kick off the project by understanding the metadata of the CRM database (see Table 3-3):

Table	Description
CUSTOMERS	Contains important customer profile information
SALES	Has historical sales transaction data for each customer
PRODUCTS	The details of all the products of SANT Enterprises
PROMOTIONS	Details of past promotional activities

Table 3-3. MetaData of the Tables in the CRM Database

There are some columns in the table that are not required. You require the information that influences SANT Enterprise's sales and customer's purchasing behavior such as

- Demographic information (age, gender, income, etc.)
- Psychographic (lifestyle) information
- Behavioral information (such as spending and purchase history)

Based on this knowledge, you create a database view CUST_TRANSACTION_V that provides you with only the previously mentioned data from the SANT Enterprises CRM database.

RFM Segmentation—Data Preparation

First, you need to create a new data mining project and start defining the data sources. Follow the steps outlined in Chapter 2 to create a new project and a data mining workflow. The project and workflow names are as in Figure 3-22.

Figure 3-22. Create ODM project and workflow

For calculating the RFM score for customers, you need the following data that are available in the sales table of SH schema of the Oracle Database.

- Revenue for each customer
- Last purchase date
- Number of visits to the store by a customer

Define a sales data source by dragging the data source node from the data section of the components panel to the workflow editor. While defining the data source, if the sales table doesn't appear, select "Include tables from other schema," and then select SH schema as shown in Figure 3-23.

Select Table						*)
Select Table	Available Tables/Vens: Available Tables/Vens: Availa	6 Edit Schema List	Q.v (sales Type TABLE	8	Ca Deta Source	La Explore Data
	Indude Tables from Other Schemas Columns Data Amme No table selected	Available Schemas Q, Hame Name LBACSYS MODYS QDARSYS QLAPSYS QROATA QROATA QROATA QROATA QROATS SYS SYSTEM WHSYS XDB LBb	4 4 4 4	Selected Schemas Name	Q, Itane	Cancel

Figure 3-23. Define Data Source dialog box

Confirm the sales table appears in the Available Table/Views section and its attributes appear in the Columns section (Figure 3-24).

elect Table						
Select Table	Available Tables/Views:			Q,* (52	iles	
Select Columns	▲ Name		T	ype		
	DMUSER.ODMR_SALES_JSON_DATA		TA	BLE		
	SH.CAL_MONTH_SALES_MV		TA	BLE		
	SH.FWEEK_PSCAT_SALES_MV		TA	BLE		
	SH.SALES		TA	BLE		
	✓ Include Tables from Other Schemas				Edit Scher	mas
				Q*(N		mas
		Data Type	Mining Type	Q+ N2		
	Columns Data	Data Type NUMBER	Mining Type Numerical		me	
	Columns Data			Length	ame Column ID	
	Columns Data	NUMBER.	Numerical	Length 22	ame Column ID 7	
	Columns Data	NUMBER NUMBER	Numerical Numerical	Length 22 22	ame Column ID 7 4	
	Columns Data	NUMBER NUMBER NUMBER	Numerical Numerical Numerical	Length 22 22 22	ame Column ID 7 4 2	

Figure 3-24. Select Sales Data table

RFM Segmentation—DATA Modeling

Drag an SQL Query node from the data section to the workflow area. Connect the Sales data source to the SQL Query (Figure 3-25).

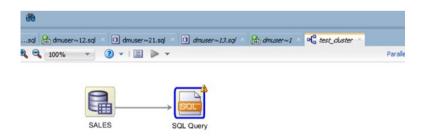


Figure 3-25. Connect Sales node to SQL Query node

Right-click on the SQL Query node and select Edit to include SQL query for adding the RFM SQL statement as shown in Figure 3-26. The SQL statement calculates an RFM score that places each customer into certain deciles. For example, the top 20% of customers, based on their recent purchases are placed into recency decile 5; the next 20% into recency decile 4, and so on. Similarly, the top 20% of customers, based on their frequency and total purchase amount, are placed into frequency and monetary decile 5, respectively. These scores are then added to calculate an overall score for each customer.

Source Snippets PL/SQL Functions R Scripts	6 (a) (a)
Podes ⊕-☐ SALES_N\$10001	<pre>select cust_id, rfm_recency, rfm_frequency, rfm_monetary rfm_recency*100 + rfm_frequency*10 + rfm_monetary from (select cust_id, ntile (5) over (order by last_purchase_date) as rfm_r ntile (5) over (order by count_purchases) as rfm_f from (select cust_id, max(time_id) as last_purchase_date, count(*) as count_purchase, sum(amount_sold) as total_amount from "SALES_N\$10001" group by cust_id)) order by 5 desc</pre>
	Line 16 Column 1

Figure 3-26. SQL Query Node Editor

Figures 3-27 and 3-28 show the snapshots of the RFM score output after executing the SQL query node. The best customers who ranked excellent in the three categories (recency, frequency, and monetary) are assigned a score of 555 and are displayed at the top of the results (Figure 3-27). As we scroll down the result section, we discover the poorperforming customers with low scores.

	CUST_ID	RFM_RECENCY	RFM_FREQUENCY	RFM_MONETARY	RFM_COMBINED
1	13,113	5	5	5	555
2	11,108	5	5	5	555
3	4,713	5	5	5	555
4	1,593	5	5	5	555
5	181	5	5	5	555
6	7,993	5	5	5	555
7	2,448	5	5	5	555
8	9,502	5	5	5	555
9	9,213	5	5	5	555
10	2,656	5	5	5	555
11	6,013	5	5	5	555
12	14,270	5	5	5	555

Figure 3-27. RFM scores

View	Actual Da	ata 🔻 <u>S</u> ort	Parallel Query	Off Eilter: Ente	r Where Clause
	CUST_ID	RFM_RECENCY	RFM_FREQUENCY	RFM_MONETARY	RFM_COMBINED
721	1,688	5	4	3	54
722	3,177	5	4	3	54
723	9,168	5	4	3	54
724	7,517	5	4	2	54
725	3,182	5	4	2	54
726	4,152	5	4	2	54
727	817	5	3	5	53
728	7,748	5	3	5	53
729	4,845	5	3	5	53
730	210	5	3	5	53
731	10,373	5	3	5	53
732	3,643	5	3	5	53
733	1,626	5	3	5	53
734	9,881	5	3	5	53

Figure 3-28. Poor-performing customers

Need-Based Segmentation—Data Preparation

As we are interested in creating need-based segmentation for only GOLD standard customers, we will filter those customers from the rest. To do that, drag a Filter Rows node from the Transforms section to the workflow worksheet (Figure 3-29).

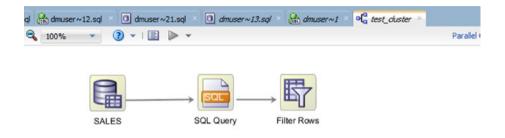


Figure 3-29. Connecting SQL Query node with Filter Rows node

Right-click on the Filter Rows node and select edit. This results in a pop up of an expression worksheet as shown in the Figure 3-30. To add a filter, click on the pencil icon to build the expression for the filter condition.

Edit Filter Rows Node	×
Filter Columns	-
Click the Expression Builder icon in the tool bar	🖉 💥 Q, Find

Figure 3-30. Build expression for Filter condition

In the expression builder field, write the expression for the filtering condition and click on the validate button to validate correctness of the syntax (Figure 3-31).

Attributes Functions	Expressio	n						
Node CUST_ID RFM_COMBINED RFM_REQUENCY RFM_MONETARY RFM_RECENCY	AND "R	REQUENC FM_MONE FM_RECE	TARY" >	=4				
	<	>			1-	-	Or	
	()	II	+	•		1	%
	Validation	Results						
	Validation	n successfi	1				V	alidate
ataType : NUMBER								
Help						OK		Cancel

Figure 3-31. Expression builder for filter conditions

Next, we need to join this filtered RFM data with the customer profile attributes for creating value-based clusters. To do that, create a data source for the view CUST_ TRANSACTION_V that was built during the data understanding phase. Then, drag the Join node from the Transforms section to the workflow editor. Connect the CUST_ TRANSACTION_V view and the Filter Rows node to the Join node as shown in Figure 3-32.

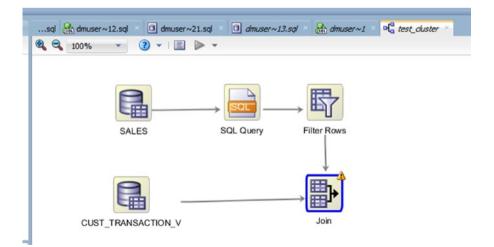


Figure 3-32. Connect CUST_TRANSACTION_V and Filter Rows node to the Join node

Next, we need to add the join conditions to combine the customer records from CUST_TRANSACTION_V and the Filter Rows node. Edit the Join node and click on the Plus icon to add the join condition mentioned (Figure 3-33).

idit Join Node		-
Join Columns Filter		
Cartesian Join		•
Join Columns		💠 💥 Q= Column 1
Column 1	Column 2	Join Type

Figure 3-33. Edit Join node

Select CUST_ID from both the data sources and click on the \underline{A} dd button to add the condition to the Join node (Figure 3-34).

ource 1			Source 2	
CUST_TRANSACTION_V		-	Filter Rows	•
Join Columns	Q. Name		Join Columns	Q+ Name
Name	Data Type		→ Name	Data Type
UST_EFF_TO	DATE	-	CUST ID	NUMBER
UST_EMAIL	VARCHAR2	0	RFM_COMBINED	NUMBER.
UST_FIRST_NAME	VARCHAR2		RFM_FREQUENCY	NUMBER
UST_GENDER	CHAR		RFM_MONETARY	NUMBER
LUST_ID	NUMBER		RFM_RECENCY	NUMBER.
UST_ID2	NUMBER			
UST_INCOME_LEVEL	VARCHAR2			
CUST_LAST_NAME	VARCHAR2			
CUST MAIN PHONE NUMBER	VARCHAR2	+		
			≫ Add	
			You	
Join Columns				💥 Q= (Column 1
Column 1		Column 2	Join Type	
UST_TRANSACTION_V.CUST	_ID	Filter Rows.	Inner	
UST_TRANSACTION_V.CUST	JD	Filter Rows.	Inner	

Figure 3-34. Edit Join Column dialog box

Next, we need a Transform node to view the joined data and carry out required data transformations. Drag a Data Transformation node from Transforms panel to the workflow editor (Figure 3-35).

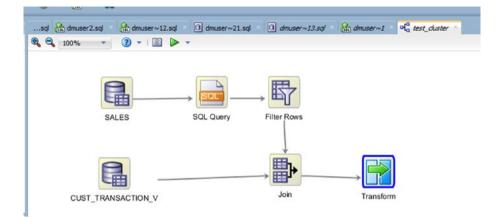


Figure 3-35. Connect Transform node to Join node

Right-click the transform node and select edit to view the table columns. For this data set, there are some columns such as ID columns that don't add any value to the model. Also, some variables such as CUST_YEAR_OF_BIRTH and RFM_COMBINED are assigned number data type automatically by the system. However, if we examine the data for this variable, it is discrete in nature and so should be of character data type. The values for discrete data are distinct in nature and so are recognized as categorical data types. Continuous data is indicated as a number data type, as it is not restricted to a separate value and occupies any value over a continuous range.

Exclude the following columns (Table 3-4) by clicking on the Output Column next to the column name, as these are not to be used for building the clustering model.

Exclude	d Columns
CHANNEL_ID	PROD_SUBCATEGORY_ID
CUST_ID	PROD_TOTAL_ID
CUST_ID1	PROD_CATEGORY_ID
CUST_ID2	PROMO_ID
PROD_CATEGORY_DESC	PROMO_ID1
PROD_CATEGORY_ID	PROMO_TOTAL_ID
PROD_DESC	RFM_COMBINED
PROD_ID	RFM_FREQUENCY
PROD_ID1	RFM_MONETARY
PROD_SRC_ID	RFM_RECENCY
PROD_SUBCATEGORY_DESC	SUPPLIER_ID

Table 3-4. Excluded Columns

Next, we change the datatype of CUST_YEAR_OF_BIRTH and RFM_COMBINED. Click on the plus icon as shown in Figure 3-36 to change the data type of CUST_YEAR_ OF_BIRTH.

Transformations Statistics						
Statistics: 10 Columns from 0 F	Rows(Sampled)	/ 🗙 🕂 📑	-> <=	Q+ Ouput	Column	
Name	Туре	Source	Transform	m	Output	
CUST_ID2	NUMBER				44	
CUST_INCOME_LEVEL	VARCHAR2				->	
CUST_LAST_NAME	VARCHAR2				->	
CUST_MAIN_PHONE_NUM	. VARCHAR2				->	
CUST_MARITAL_STATUS	VARCHAR2				->	
CUST_POSTAL_CODE	VARCHAR2				->	
CUST_STATE_PROVINCE	VARCHAR2				->	
CUST_STREET_ADDRESS	VARCHAR2				->	
CUST_VALID	VARCHAR2				->	
CUST_YEAR_OF_BIRTH	NUMBER				→	
PROD_CATEGORY	VARCHAR2		1.1		->	

Figure 3-36. Edit Transform Node dialog box

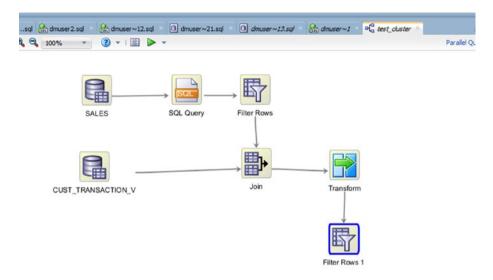
In the Expression Builder, enter the name of the column as "TRNSF_CUST_YEAR_ OF_BIRTH" to indicate it as a transformed variable of CUST_YEAR_OF_BIRTH and select CUST_YEAR_OF_BIRTH from the attribute list (Figure 3-37).

Attributes Functions	Column Name: TRNSF_CUST_YEAR_OF_BIRTH	
CUST_POSTAL_CODE CUST_STATE_PROVINCE CUST_STREET_ADDRESS CUST_VALID CUST_VALID PROD_CATEGORY PROD_CATEGORY_DESC PROD_CATEGORY_ID	Expression "CUSI_YEAR_OF_BIRTH"	

Figure 3-37. Expression Builder for the transform node

In the Functions tab, expand the conversion folder and select the TO_CHAR function for number to character data type conversion. The final expression should appear as shown in Figure 3-38.

Attributes Functions	Column Name:	TRNSF_CUST	YEAR_OF	BIRTH			
Character	Expression						
CONVERT(VARCHAR2, VARCHAR2, VARCHAR - CONVERT(VARCHAR2, VARCHAR2, VARCHAR - NLS_CHARSET_DECL_LEN(NUMBER, NUMBER - NLS_CHARSET_INAME(NUMBER) return VARC		R_OF_BIRTH"					
TO_CHAR(DATE, VARCHAR2, VARCHAR2) re TO_CHAR(NUMBER, VARCHAR2, VARCHAR2							
TO_CHAR(NUMBER, VARCHAR2, VARCHAR2 TO_CLOB(VARCHAR2 NCLOB) return CLOB		>		!=	-	Or	
-TO_CHAR(NUMBER, VARCHAR2, VARCHAR2		>		!=	-	Or	


Figure 3-38. Expression Builder for transformations

Carry out the same process to transform the data type of attribute RFM_COMBINED from NUMBER to VARCHAR2, which is a character data type (Figure 3-39).

TRNSF_CUST_YEAR_OF_BI	VARCHAR2	Expression	Custom	⇒>
TRNSF_RFM_COMBINED	VARCHAR2	Expression	Custom	->

Figure 3-39. Transformed variables

As this segmentation exercise is to help the marketing team to target only currently active GOLD customers, we need to select only the active customers from our database. To do that, create another Filter node in the workflow sheet (Figure 3-40).

Figure 3-40. Filter Rows 1 connected to Transform node

Edit the filter node and build an expression to select only active customers as shown in Figure 3-41.

it Filter Rows Node	
ilter Columns	
Click the Expression Builder icon in the tool bar	/ 🗙 Q. Find
"CUST_VALID" ='A'	

Figure 3-41. Edit Filter Rows Node dialog box

Need-Based Segmentation—Data Modeling

Drag the clustering node from Models section and connect it to the Filter Rows 1 node. From the properties panel, change the name of the node to sant_clusters for its better visibility and to distinguish it from other nodes (Figure 3-42).

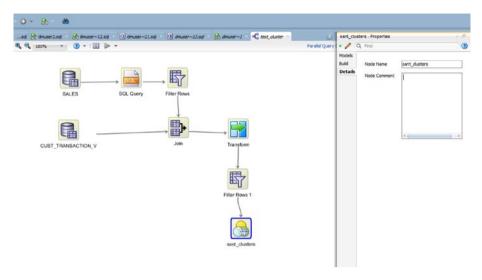


Figure 3-42. Node rename to sant_clusters

Edit the clustering node, and select only the "K-Means" algorithm.

uld Input Text				
Case ID: </th <th>•</th> <th></th> <th></th> <th></th>	•			
Model Settings				+ 7 × 5
	41 14	Data	Data Usage	
Name	Algorithm	Date	Data Usage	

Figure 3-43. Edit Clustering Build Node dialog box

Click on the pencil icon in the model settings row to edit the Algorithm properties as shown in Figure 3-43. The model settings user interface shows two tabs—Data Usage and Algorithm Settings (Figure 3-44).

- The Data Usage tab has the inputs that are to be used for building the model.
- The Algorithm Settings tab shows the setting parameters for the model.

Based on the marketing team's advice, we need to create three clusters. Navigate to the Algorithm tab and change the setting Number of Clusters to 3 (Figure 3-44).

Data Usage	Algorithm Settings		
The default s	settings should work well	for most use cases. For inf	ormation on changing model algorithm settings, click Hel
Number of C	lusters:	3]
Growth Facto	or:	2]
Convergence	Tolerance:	0.01]
Distance Fun	action:	Euclidean 🗸]
Number of It	erations:	30]
Min Percent	Attribute Rule Support:	0.1]
Number of H	istogram Bins:	10]
Split Criterion	1:	Variance	

Figure 3-44. K-Means Algorithm Settings

Execute the node; and once it completes successfully, view the results by selecting the model from the View Models option as shown in Figure 3-45.

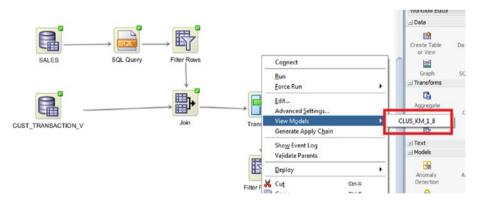


Figure 3-45. View Models option

Result Evaluation

You can see a tree structure for the clusters built (Figure 3-46). The leaf nodes are the three desired clusters.

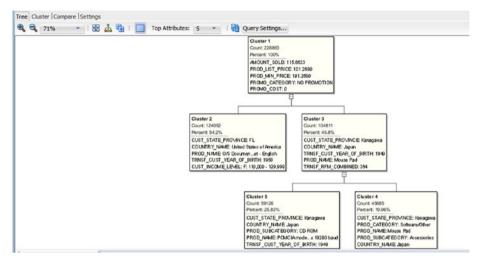


Figure 3-46. Cluster hierarchy

Understanding the clusters

Before finalizing the clusters, it is important to understand the clusters created by the algorithm. The cluster analysis is not very useful if it doesn't give enough information to categorize the clusters. The cluster results should give some unique information related to customers that can define the segments.

If we analyze the three final clusters for high value but recently inactive customers of Sant Enterprises, we find out some of the customer attributes that uniquely define each segment (Figure 3-47).

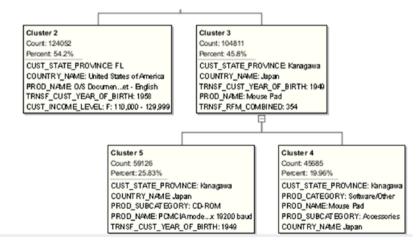
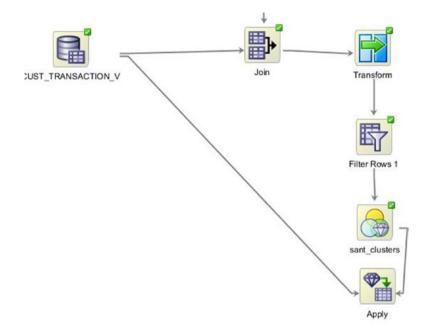


Figure 3-47. Three-leaf node Clusters 2, 5, and 4

Cluster 2: The customers in this segment are mostly for Florida in the United States. Their income level is between \$110,000 to \$129,999, and they were born in 1958. They were the frequent buyers for the product O/S Document-English.

Cluster 4: This is a segment of customers from Kanagawa, Japan. However, they buy mostly from the Software/Other category. They are inclined toward computer accessories such as Mouse Pads.


Cluster 5: This segment of customers are from Kanagawa, Japan who were born in 1949. They are a frequent buyers of CD-ROM products.

The preceding clusters give a fair idea about the customers the marketing team for Sant Enterprises can utilize to design personalized promotions to bring them back to the store.

Deployment-Storing the Results Back to the Database

The insights are useful when they are put into action and stored in the operational database for future reference. Oracle Advanced Analytics sits over the Oracle Database, so integrating the results back to operations in real time is faster than using other data science tools.

To store the results back to the database, drag an Apply node from the "Evaluate and Apply" section of the component panel. Connect this node to the sant_clusters node and the CUST_TRANSACTION_V data source as shown in Figure 3-48.

Figure 3-48. Connect Apply node to the sant_clusters node and CUST_TRANSACTION_V node

Edit the Apply node, click on the plus icon to add CUST_ID as an additional column, and navigate to the Additional Output column as shown in Figure 3-49.

Predictions	Additional Output		
Output Dat	a Columns		🛖 💥 📆 Automatic 🔍
Column		Alias	Data Type

Figure 3-49. Edit Apply Node dialog

Once you select CUST_ID as an additional attribute to be a part of the stored cluster results, select OK to save the details (Figure 3-50). This additional information for the result set provides a key to joining the customer profile information with the clustering results.

vailable Attributes				Selected Attributes		
A Name	Data Type			Name	Data Type	
CUST_EMAIL	VARCHAR2	~	_	CUST_ID	NUMBER	
CUST_FIRST_NAME	VARCHAR2	-	8			
CUST_GENDER	CHAR		88			
CUST_ID2	NUMBER					
CUST_INCOME_LEVEL	VARCHAR2		8			
CUST_LAST_NAME	VARCHAR2		3			
CUST_MAIN_PHON	VARCHAR2					
CUST_MARITAL_ST	VARCHAR2					
CUST_POSTAL_CODE	VARCHAR2					
CUST_STATE_PROV	VARCHAR2	~				

Figure 3-50. Edit Output Data Column Dialog box

Create an output table to store the results in the database by dragging the Create Table or View node from Data section to the worksheet. Rename this node to SANT_CLUS_OUTPUT from the node's properties panel (Figure 3-51).

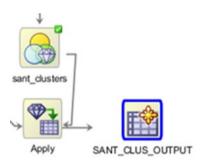


Figure 3-51. Output Table node renamed to SANT_CLUST_OUTPUT

To define the table for storing the result, right-click on the SANT_CLUS_OUTPUT node and select edit. Enter CUST_CLUSTER_RESULTS as a name for the new table. Click OK to return to the workflow editor (Figure 3-52).

Name: CUST_CLUSTER_RE	SULTS			
Type: Table View				
Auto Input Columns Selecti	on			
Data				1%
A Target Name	Target Type	Кеу	Index	Alias
CLUS_KM_1_8_CLID	NUMBER			
CLUS_KM_1_8_PROB	BINARY_DOUBLE			
I CUST_ID	NUMBER			

Figure 3-52. Edit Create Table or View Node dialog box

The final workflow looks like Figure 3-53.



Figure 3-53. Final workflow

Right-click the node and select Run to execute the workflow.

Congratulations!! You have successfully created a customer segmentation model for SANT Enterprises using Oracle Advanced Analytics.

You can query the table CUST_CLUSTER_RESULTS from the database to see the customer segments. As shown in Figure 3-54, each row consists of the customer ID, the cluster ID to which it belongs, and the probability of that customer being a part of the same cluster in the future.

	y Builder		🕨 🐷 👻 🕄 I 🕼 🕼 🖓 🥔 🖓 🕼 I					
,	from CUST CLUSTER RESULTS							
Query Result ×								
- 📇 🚱 😼 so	L Fetched 50 rows in 0.086 seconds							
CLUS_KM	1_8_CLID & CLUS_KM_1_8_PROB	CUST_ID						
1	50.9873536188628583	987						
2	20.5340848472778595	1660						
3	50.5758291239538877	1762						
4	50.987053044874537	1843						
5	50.9919233168019342	1948						
6	50.9880359689700888	2273						
7	50.984516791128439	2380						
8	50.5174489267859852	2683						
9	50.9885933562091437	2865						
10	50.9907091838297252	4663						
11	50.5281610042887301	5203						
12	20.5260086394976936	5321						
13	50.9875384782329601	5590						
14	20.5005743435580705	6277						
15	50.5377686908190338	6859						
16	2 0.500532452163227	8540						
17	50.5578166163724567	9076						
18	50.9953938171633636	12099						
19	50.9928188396542391	35834						

Figure 3-54. Cluster results stored in the database table CUST_CLUSTER_RESULTS

Assigning Segments to New Customers

When new customers are acquired, it is better to assign them to a segment at the beginning of their journey. This will help the marketing team to be focused and proactive in understanding their customers from day one. In Oracle Advanced Analytics, new cluster assignment can be done in two ways.

Real-time assignment: The real-time cluster assignment can be done by invoking cluster_id and cluster_probability functions from an SQL query as shown in the following code segment. You can make this SQL statement a part of the CRM application that gets triggered when a new customer is entered into the system.

```
SELECT cust_id,
    cluster_id(CLUS_KM_1_8 USING *) as Cluster_Num,
    cluster_probability(CLUS_KM_1_8, cluster_id(CLUS_KM_1_8 USING *)
USING *) as Cluster_Prob
FROM CUST_TRANSACTION_V
```

Batch process: In a fast-moving business environment such as a supermarket, it is not always necessary to process customer segments in real time. There is not much business impact if the customers are assigned to segments in an overnight batch process or during weekends.

You can use the APPLY procedure in DBMS_DATA_MINING package for a batch apply operation, and this can also be automated to run at a certain schedule using DBMS_SCHEDULER.

```
SET SERVEROUTPUT ON;
BEGIN
dbms_data_mining.apply
        (model_name => 'CLUS_KM_1_8',
        data_table_name => 'CUST_TRANSACTION_NEW',
        case_id_column_name => 'cust_id',
        result_table_name => 'CUST_SEGMENT_RESULTS');
END;
/
```

Summary

The purpose of this chapter was to introduce you to the different clustering methods that Oracle Advanced Analytics offers and the process through which it can be automated for a particular business case. Clustering plays an important role in data science where the data attributes can be grouped into homogeneous segments. We interactively studied the *k*-means algorithm in detail and the various ways through which this algorithm can be applied from different platforms. The other two clustering algorithms present in Oracle Advanced Analytics algorithms can be used in a similar fashion with only changes to their model settings. The OTN docs on Oracle Data Mining have a detailed list of parameters required for each algorithm. Also, not all clustering algorithms are suitable for each and every data set. Certain criteria such as the number of attributes and records in the data set, the data type of the attributes, and the number of outliers can be used as a deciding factor in choosing a clustering algorithm.

CHAPTER 4

Association Rules

Almost anyone who steps into the field of data science would have certainly heard the famous diaper and beer story. An analytical study conducted by a major grocery store on their transactional purchase history found that a man between 30 and 40 years of age, shopping between 5 p.m. to 7 p.m. on Fridays who buys diapers were most likely to have beers in their cart. This motivated the grocery store to have the beer isle close to the diaper isle, and the result was a boom of about 35% increase in sales of both the products. This was a fascinating pattern that they found out from data that was invisible to the naked eye and the experience of the store management. So, how did the store find out such an unusual pattern and how do you find such interesting rules for your business? The opportunity lies in conducting an affinity analysis on your data. Affinity analysis implements association rule algorithms at its core that are used to find frequent events that co-occur. Some of its possible uses in various industries include

- Market Basket Analysis: Used by retailers to identify products that have a high probability of being purchased together
- Recommendation engine: Used by both online and offline (brickand-mortar) stores to recommend products to customers
- Manufacturing organizations: Can be used to find associations and correlations between different activities that affect the quality of a product
- Health care: Used to diagnose possible medical symptoms based on a patient's history
- Internet of Things: Used to have an insight on related events that cause machine failure
- Insurance: Used to know customers preferences on insurance products such as health insurance and motor insurance purchased together. This information can be used to create product bundles or for upselling and cross-sell promotion campaigns.

In this chapter, I discuss the following topics:

- Introduction to association rules
- Terminologies associated with association rules
- Fundamentals of Apriori algorithms
- Identification of interesting rules
- Association rules using Oracle SQL and PLSQL APIs
- Association rules using Oracle R Enterprise
- Association rules using Oracle SQL Developer GUI
- Case Study: Market Basket Analysis

Introduction to Association Rules

Association rules help to discover the relationship between different activities that co-occur together. Given a set of transactions, association rules are useful in identifying patterns that uncover relationships and connections among the rules' various attributes. A proper association rule is in the form of "if-then" statements and are formed as follows:

{ Item A} -> { Item B} with a support of X% and Y% confidence

The preceding rule implies that there is a relationship between Item A and Item B such that whenever Item A occurs, Item B also occurs. Here, Item A is known as an antecedent and Item B as a consequent. The support and confidence are the metrics that helps to identify the rule strength. I will be discussing the metrics in a later section.

Terminologies Associated with Association Rules

There are certain terminologies specific to association rule analysis that are necessary to understand prior to discussing the working of association rules. This terminology style closely resembles the language used in retail, as it initially originated to conduct basket analysis for customer transactions.

Transaction: This is the record that contains information about the occurrence of certain events. For example, a purchase transaction records the details of a purchase made by a customer. It might include the details of the item purchased, customer name and address, the sales amount, and so forth. A typical purchase transaction would look like Figure 4-1:

Transaction ID	Transactio n Date	Customer ID	Item Purchased	Unit Sale Price(In Dollars)
T01	11/06/2016	C01	Bread	1.2
T01	11/06/2016	C01	Butter	2
T02	11/06/2016	C02	Milk	3.5
T02	11/06/2016	C02	Bread	1.2
T02	11/06/2016	C02	Egg	1.2
T03	11/06/2016	C03	Bread	1.2
T03	11/06/2016	C03	Butter	2
T04	12/06/2016	C01	Cornflakes	2
T04	12/06/2016	C01	Milk	3.5
T04	12/06/2016	C01	Butter	2
T04	12/06/2016	C01	Egg	1.2
T05	12/06/2016	C03	Bread	1.2
T05	12/06/2016	C03	Milk	3.5
T05	12/06/2016	C03	Egg	1.2

Figure 4-1. Example purchase transactions data

K-Item sets: These are collections of *K* items such as {bread, butter}. The set {bread, butter} is a two-item set. Individual elements {Bread} and {Butter} are considered a one-item set each.

Support: This is the frequency of occurrence of particular item sets over the total number of transactions. For example, if the transactions with an item set {Bread, Butter} occur 3 times out of 5 transactions that are analyzed, the support is 0.6 or 60%.

Support = Frequency(rule)/Number of transactions

Confidence: Confidence is the ratio of a rule's support to that of the number of transactions that includes only the antecedent of the transaction. For example, bread had been purchased 4 times out of 5 transactions, which has the support of 0.8. Out of those, bread and butter are bought together three times, with a support of 0.6. Therefore, the confidence of butter to be put along with bread is 0.6/0.8 = 0.75 or 75%.

Confidence = Support(rule)/Support(Antecedent)

Association rule algorithms are computationally resource intensive, as they recursively search for k different items to discover item sets and rules; so a classic algorithm "Apriori" is widely used to create association rules. The key idea and assumption in the Apriori algorithm is monotonicity, that is, a subset of a frequent item set is also an item set. This helps reduce the number of computational passes over the data to find the rules. A minimum support and confidence threshold is specified before the execution of the algorithm. The goal is to find item sets that are above the specified minimum support and confidence threshold.

Oracle Advanced Analytics implements the Apriori algorithm for association rules.

Working of an Apriori Algorithm

Apriori employs an iterative method to find all frequent item sets and then generate rules out of those frequent item sets. It reduces the number of candidates being explored by examining only those item sets whose support is greater than the minimum support count (see Figure 4-2). All infrequent item sets are pruned and are not used for rule generation.

Minimum Support	0.4
Minimum Confidence	0.6
Maximum Rule Length	2

Figure 4-2. Minimum setting parameters

STEP 1: Start with one-item sets and calculate support of each item (see Figure 4-3).

Item	Count	Support
Bread	4	0.8
Butter	3	0.6
Milk	3	0.6
Egg	3	0.6
Cornflakes	1	0.2

Figure 4-3. Support calculation

STEP 2: Prune the items with less than a minimum support threshold of 0.4 and retain the remaining items for further analysis (see Figure 4-4).

Item	Count	Support
Bread	4	0.8
Butter	3	0.6
Milk	3	0.6
Egg	3	0.6

Figure 4-4. Items above the minimum support threshold

STEP 3: Generate all two-item sets for the transactional records (Figure 4-5).

	Itemset
T01	(Bread, Butter)
T02	(Milk,Bread),(Milk, Egg),(Bread,Egg)
T03	(Bread, Butter)
T04	(Cornflakes,Milk),(Cornflakes,Butter),(Cornflakes,Butter),(Milk,Butter),(Milk,Egg),(Butter,Egg)
T05	(Bread,Milk),(Bread, Egg),(Milk,Egg)

Figure 4-5. Two-item sets

STEP 4: Calculate the support of each two-item set (Figure 4-6).

	Support
(Bread, Butter)	0.4
(Milk,Bread)	0.6
(Milk, Egg)	0.6
(Bread,Egg)	0.6
(Cornflakes, Milk)	0.2
(Cornflakes, Bread)	0.2
(Cornflakes,Egg)	0.2

Figure 4-6. Support for each two-item set

STEP 5: Find the frequent two-item sets by considering only those item sets that have support more than the minimum support threshold (Figure 4-7).

	Support
(Bread, Butter)	0.4
(Milk,Bread)	0.4
(Milk, Egg)	0.6
(Bread,Egg)	0.6

Figure 4-7. Frequent two-item sets

STEP 6: Calculate the confidence of each rule in the considered frequent two-item set (Figure 4-8).

CHAPTER 4 ASSOCIATION RULES

Itemset	Rules	Antecedent Support	Confidence
(Bread, Butter)	Bread -> Butter	0.8	0.5
	Butter -> Bread	0.4	1
(Milk,Bread)	Milk -> Bread	0.6	0.666666667
	Bread -> Milk	0.8	0.5
(Milk, Egg)	Milk -> Egg	0.6	1
	Egg -> Milk	0.6	1
(Bread,Egg)	Bread -> Egg	0.8	0.5
	Egg -> Bread	0.6	0.666666667

Figure 4-8. Confidence calculation

STEP 7: Consider only those rules above the minimum confidence as the final set of association rules (Figure 4-9).

Association Rules	Support	Confidence
Butter -> Bread	0.4	1
Milk -> Bread	0.4	0.666666667
Milk -> Egg	0.6	1
Egg -> Milk	0.6	1
Egg -> Bread	0.4	0.666666666

Figure 4-9. Two-item sets above the minimum confidence threshold

Identify Interesting Rules

When the number of items is large, a huge number of association rules are produced. So the task of finding out the relevant and interesting insights out of the generated rules is a cornerstone of a data science project involving association rule mining. Interestingness of rules involves examining them using the functional domain knowledge as well as statistical measures. For example, a store manager, based on his experience, might not want a rule with bread and butter as an insight, although the statistical measures for the same rules are high.

The primary statistical measures for association rules are support, confidence, and lift ratios. As discussed earlier, support and confidence form the building blocks to create the association rules. A rule with high confidence and high support can be considered an insight.

Lift ratio is another measure to judge the importance of a rule. It denotes whether a derived rule is better than the benchmark confidence, that is, the confidence of considering only the consequent. In our previous example, 80% of the entire population buys bread. If we consider the rule with Butter -> Bread, which predicts that the customers will buy bread with 100% confidence, the rule will have a lift of 100/80 = 1.25.

Lift = Rule Confidence/Confidence(Consequent)

When lift ratio is greater than 1, it means that the consequent and antecedent occur more frequently than expected, so we can consider it a good rule.

Association rules are not considered good for problems involving rare events, as the methodology to calculate the rules is highly dependent on the support and confidence measures. These measures are directly proportional to the number of transactions in the data set. So, if the occurrence of certain events is more in the transactions, the better their support, confidence, and lift measures.

Usually, rare events have low occurrence in transactions and are unidentifiable using these measures. These transactions are known as null transactions, as they don't contain the events/items that are examined. So, an optimum plan can be decreasing the support and confidence threshold during the process of building an association rule model and then using null invariant measures to identify these records. Null invariant measures consider only the interaction between the events/items and are not influenced by null transactions. Null invariant measures such as Cosine, Kulc, and Max_Confidence can be used in conjunction with other discussed measures to identify some of the rare, interesting patterns.

In the following sections, I will discuss the association rule mining using Oracle Advanced Analytics technology stack.

Algorithm Settings

Table 4-1 is a list of settings necessary to tune to the Apriori algorithm in Oracle Advanced Analytics.

Parameter	Default Value	Description
Maximum Rule Length	4	Defines the maximum length of a rule. For example, if we specify the maximum rule length as 4, the antecedent will have at most 3 items and the consequent will have 1 item.
Minimum confidence(%)	10	Minimum confidence threshold for rules to be generated.
Minimum support(%)	1	Minimum support threshold for the item sets to be considered as frequent item sets.

Model Settings

To create an association rules model, the attributes in Table 4-2 are required.

Parameter	Description
Transaction ID	Provides the unique identifier that identifies a transaction. It can be a single column or a combination of multiple columns.
Item ID	Name of the column whose data is to be analyzed.
Value	Whether to have existence-based or value-based association rules. Value-based association rules generate rules by taking the occurrence of items and one of their measures such as quantity. Existence-based methods only consider the items.

Association Rules Using SQL and PLSQL

In this section, I will demonstrate the different methods available in Oracle Advanced Analytics to conduct affinity analysis using association rules. The different methods will help you to model a suitable solution based on your use case and the preferred skill set.

STEP 1: Create a setting table and insert model settings for association rules. It overrides the default values for the model-setting parameters. This table requires at least one record for odms_item_id_column_name to define the item_id parameter. If other records are not inserting, the model-building API precedes with the default parameters.

The settings table has two attributes:

- setting_name: Name of the setting parameter
- setting_value: Value of the setting parameter

```
set serveroutput on
CREATE TABLE ar settings demo (
  setting_name VARCHAR2(30),
  setting value VARCHAR2(4000));
/
BEGIN
-- Inserts the default overriden value for minimum support
 INSERT INTO ar settings demo VALUES
  (dbms data mining.asso min support,0.1);
-- Inserts the default overriden value for minimum confidence
 INSERT INTO ar settings demo VALUES
  (dbms data mining.asso min confidence,0.1);
-- Inserts the default overriden value for maximum rule length
 INSERT INTO ar settings demo VALUES
  (dbms data mining.asso max rule length,3);
-- Inserts the Item ID
 INSERT INTO ar settings demo VALUES
```

```
(dbms_data_mining.odms_item_id_column_name, 'PRODUCT_ID');
COMMIT;
END;
/
```

STEP 2: Create the mining model.

To create the association rules model, you need to call the CREATE_MODEL Procedure of the DBMS_DATA_MINING package with the parameters shown in Table 4-3.

 Table 4-3.
 Parameters for Creating an Association Rules Model Using DBMS_DATA_ MINING.CREATE_MODEL

Parameter	Mandatory	Description
model_name	Yes	To assign a meaningful model name for the model
mining_function	Yes	The data mining function that is to be used; for association rules, you need to call DBMS_DATA_ MINING.ASSOCIATION function
data_table_name	Yes	Name of the data table/view to be used to create the model
case_id_column_name	Yes	The unique record identifier for the data set; the transaction_id is used as a case id column
settings_table_name	Yes	Name of the table that contains the model settings values

The syntax for creating new association rules model using PLSQL API is as follows:

```
BEGIN
```

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'DEMO_AR_MODEL',
    mining_function => DBMS_DATA_MINING.ASSOCIATION,
    data_table_name => 'DEMO_AR_RULES_DATA',
    case_id_column_name => 'TRANS_ID',
    settings_table_name => 'ar_settings_demo'
    );
END;
/
```

STEP 3: Check if the model is created successfully (see Figure 4-10).

select * from user_mining_models where model_name = 'DEMO_AR_MODEL'

CHAPTER 4 ASSOCIATION RULES

Worksheet	Query Build	ler				
sele	ct 🐮 from	user_mining_model	<pre>s where model_name = 'DEMO</pre>	AR_MODEL!		
		uery Result X	-			
	-	All Rows Fetched: 1 in 0.0	1	CREATION_DATE	BUILD DURATION	MODEL_SIZ
*	-		APRIORI ASSOCIATION RULES	×	13	0.052

Figure 4-10. User mining model record

STEP 4: Check the model settings that were used to create the model (see Figure 4-11).

```
SELECT setting_name, setting_value
    FROM user_mining_model_settings
    WHERE model_name = 'DEMO_AR_MODEL'
    ORDER BY setting_name;
```

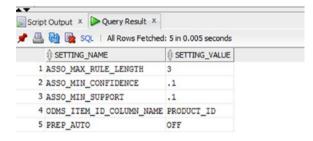


Figure 4-11. Model Settings for association rules model

STEP 5: Result evaluation.

The function GET_ASSOCIATION_RULES of DBMS_DATA_MINING package can be used to get the generated association rules. The result from this method is of table datatype (DM_RULES structure); the API has to be invoked as shown in the following example. The example shows the method to extract rules with the top 10% of item sets based on the support value of the model (see also Figure 4-12).

```
SELECT a.attribute_subname antecedent,
    c.attribute_subname consequent,
    rule_support support,
    rule_lift lift
FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('DEMO_AR_MODEL', 10)) T,
    TABLE(T.consequent) C,
    TABLE(T.antecedent) A
ORDER BY lift DESC, support DESC, support DESC;
```

	ANTECEDENT	CONSEQUENT	\$ SUPPORT	CONFIDENCE	\$ LIFT
1	P04	P02	0.3333333333333333333333333333333333333	1	1.5
2	P03	P02	0.3333333333333333333333333333333333333	1	1.5
3	P01	P04	1	1	1
4	P04	P01	1	1	1
5	P02	P04	0.6666666666666666666666666666666666666	1	1
6	P02	P04	0.6666666666666666666666666666666666666	1	1
7	P02	P01	0.6666666666666666666666666666666666666	1	1
8	P04	P01	0.6666666666666666666666666666666666666	1	1
9	P02	P01	0.6666666666666666666666666666666666666	1	1
10	P01	P04	0.6666666666666666666666666666666666666	1	1
11	P03	P04	0.3333333333333333333333333333333333333	1	1
12	P02	P04	0.3333333333333333333333333333333333333	1	1
13	P05	P04	0.3333333333333333333333333333333333333	1	1

Figure 4-12. Association rules results

Creating the Association Rules Model Using Oracle R Enterprise

The association rules algorithm is computationally intensive. If you are an R user, you can port your R code easily to the Oracle R Enterprise environment, which will help you leverage the power of in-database computation, making the models run faster. You need to boot up the R client console and follow the steps shown next for creating association rules using Oracle R Enterprise.

STEP 1: Load the ORE and arules library.

library(ORE)
library(arules)

Note The arules library is optional. It is useful if you want to analyze the results back in your R client using various native R packages.

STEP 2: Use ore.connect to connect to the database.

```
if (!ore.is.connected()) # Check if client is already connected to R
ore.connect("dmuser", "orcl", "localhost", "sibanjan123", all=TRUE)
```

STEP 3: Read the CSV (comma-separated values) file using the read.csv function. This converts the data into a data frame in R.

assoc_df <- read.csv("C:/Users/Admin/Dropbox/analytics_book/chapter-5/
example_data.csv")</pre>

STEP 4: Later this data will be pushed to the Oracle database for embedded R execution. The attributes' names should be in uppercase to be recognized by the model building APIs. Rename the attributes of the data frame to uppercase using native R's names() function.

names(assoc_df)<-c("TRANS_ID","PRODUCT_ID") # Convert to uppercase so that API recognizes it as a table column name

STEP 5: Use ore.push function to translate the R object to corresponding ore.frame object; ore.frame maps native R objects to Oracle R specific database objects.

```
ore.assoc_df <-ore.push(assoc_df)</pre>
```

STEP 6: Invoke ore.odmAssocRules with the model-setting parameters to create the association rules model.

```
ar.mod <-ore.odmAssocRules(~., ore.assoc_df, case.id.column= "TRANS_
ID",item.id.column= "PRODUCT_ID", min.support= 0.5, min.confidence= 0.7,max.
rule.length = 3)
```

STEP 7: Use the itemsets function to read and view the generated item sets (see also Figure 4-13).

```
itemsets<-itemsets(ar.mod)
itemsets</pre>
```

>	itemsets			
	ITEMSET_ID	NUMBER_OF_ITEMS	ITEMS	SUPPORT
1	1	1	P01	1.0000000
2	3	1	P04	1.0000000
3	5	2	P01	1.0000000
4	5	2	P04	1.0000000
5	2	1	P02	0.6666667
6	4	2	P01	0.6666667
7	4	2	P02	0.6666667
8	6	2	P02	0.6666667
9	6	2	P04	0.6666667
10	0 7	3	P01	0.6666667
11	L 7	3	P02	0.6666667
12	2 7	3	P04	0.6666667

Figure 4-13. Itemsets

STEP 8: Use the rules function to view the generated association rules (see Figure 4-14).

```
rules <-rules(ar.mod)</pre>
rules
       ....£R_OF_1
3
4
1
5
5
6
6
> rules
  RULE ID NUMBER OF ITEMS LHS RHS SUPPORT CONFIDENCE LIFT
1
                              1 P01 P04 1.0000000 1 1
                                                                  1
2
                              1 P04 P01 1.0000000
                                                                         1
3
                              1 P02 P04 0.6666667
                                                                  1
                                                                         1
                             1 P02 P01 0.6666667
2 P02 P04 0.6666667
2 P01 P04 0.6666667
2 P04 P01 0.6666667
2 P02 P01 0.6666667
2 P02 P01 0.6666667
                                                                  1
 4
                                                                         1
 5
                                                                  1
                                                                        1
                                                                  1
                                                                        1
 6
 7
                                                                  1
                                                                        1
8
         6
                                                                  1 1
```

Figure 4-14. Association rules

STEP 9: Sometimes there is a need to select observations specific to some attributes. We can use the subset function to pull out those specific rules. The following code example displays only the rules that have P04 as a consequent (see also Figure 4-15).

```
#Subset rules with item P04
sub.rules<-subset(rules, min.confidence=0.7, rhs=list("P04"))
sub.rules</pre>
```

>	sub.rule	28					
	RULE_ID	NUMBER OF ITEMS	LHS	RHS	SUPPORT	CONFIDENCE	LIFT
1	2	1	P01	P04	1.0000000	1	1
2	5	2	P01	P04	0.6666667	1	1
з	5	2	P02	P04	0.6666667	1	1
4	. 4	1	P02	P04	0.6666667	1	1

Figure 4-15. Rules subset

STEP 10: Native R users enjoy analyzing the results using the many open source functions that R offers. You can pull out the results from the database to an R frame using the ore.pull function. The following code pulls out the results from the database and inspects the rules using the inspect function (see also Figure 4-16).

```
# Convert the rules to the rules object of arulespackage
rules.arules<-ore.pull(rules)
inspect(rules.arules)
```

CHAPTER 4 ASSOCIATION RULES

>	inspe	ct (1	ules.	arules)		
	lhs		rhs	support	confidence	lift
1	{P01}	=>	{P04}	1.0000000	1	1
2	{P04}	=>	{P01}	1.0000000	1	1
з	{P02}	=>	{P04}	0.6666667	1	1
4	{P02}	=>	{P01}	0.6666667	1	1
5	{P01,					
	P02}	=>	{P04}	0.6666667	1	1
6	{P02,					
	P04}	=>	{P01}	0.6666667	1	1

Figure 4-16. Inspect rules

Creating the Association Model Using SQL Developer

Create a data mining project and a workflow. Refer to the steps discussed in Chapter 3 to create a new project and workflow. Once a new workflow is created, follow the steps shown here to create a cluster model in SQL Developer.

STEP 1: Create a data source for table DEMO_AR_RULES_ DATA (see Figure 4-17). Refer to Chapter 3 for the details on creating a data source.

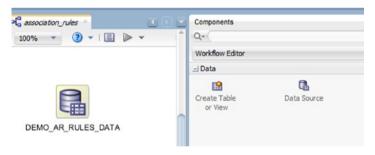


Figure 4-17. Create a Data Source node

STEP 2: To build an association rule model, select and drag the Assoc Build from the Model section in Components editor to the worksheet. Connect the data source tab and the Assoc Build Model as shown in Figure 4-18.

Figure 4-18. Connect Assoc Build node to the DEMO_AR_RULES_DATA node

STEP 3: Edit the settings of the Assoc Build node. Right-click and select Edit from the list (see Figure 4-19).

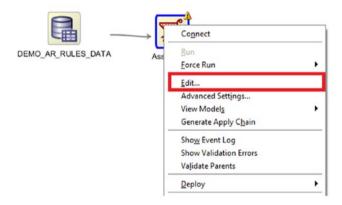


Figure 4-19. Edit Assoc Build node

STEP 4: Enter the required details: Transaction ID and Item ID of the data set. The value field is optional and defaults with Existence (see Figure 4-20).

CHAPTER 4 ASSOCIATION RULES

uild		
Transaction IDs:	TRANS_ID	/
Item ID:	PRODUCT_ID	•
Value:	<existence></existence>	-

Figure 4-20. Association Build parameters

STEP 5: Model settings have the parameters to enter maximum rule length, minimum support, and confidence thresholds. To edit the model settings, click on the pencil icon as shown in Figure 4-21.

lodel Settings			💠 🖊 🗶 🤫
Name	Algorithm	Date	
SSOC_AP_1_10	Apriori	0.0	

Figure 4-21. Edit Model Settings

STEP 6: The default values are already populated in the algorithm settings. Enter the values for the model settings of your choice to override the defaults. In this example, we enter 4 for maximum rule length to generate rules with maximum 3 items in a rule (Figure 4-22).

Algorithm Settings	
The default settings shou	ld work well for most use cases. For information on changing model algorithm settings, dick Help.
Maximum rule length	4
Minimum confidence(%)	10

Figure 4-22. Algorithm Settings

STEP 7: Execute the workflow and wait until it completes successfully (Figure 4-23).

Figure 4-23. Final workflow

STEP 8: Result Evaluation.

To view the results, right-click on the Assoc Build node and select the model from the view model option.

Column	Description
ID	Record Identifier
Antecedent	Rule antecedent items
Consequent	Rule Consequent items
Lift	Lift of the rule
Confidence(%)	Rule Confidence
Support(%)	Support Confidence
Item Count	Number of antecedent items included in the rule
Antecedent Support(%)	Support of the rule antecedent
Consequent Support(%)	Support of the rule consequent

Table 4-4. Result Fields

Once the model result appears on the screen, the rules along with the information listed in Table 4-4 appear on the screen (see Figure 4-24).

ortby:	Uft -	Descending • Ee	etch Size:				1,	000		D Quer	Y
										More 🕶	
ule Conte	subname	•									
tules: 31	out of 31								Q.*	Antecedent	
- ID	Antecedent	Consequent	Lift		Confidence(%)	Support(%)	Item Count	Antecedent Support(%)	Consequent	Support(
	P01	P02		1.0000	66.6667	66.6667	1	100	66.6667		
0	P03	P02		1.5000	100	33.3333	1	33.3333	66.6667		
11	P02	P04		1.0000	100	66.6667	1	66.6657	100		
2	P04	P02		1.0000	66.6667	66.6667	1	100	66.6667		
3	P03	P04		1.0000	100	33.3333	1	33.3333	100		
4	P04	P03		1.0000	33.3333	33.3333	1	100	33.3333		
5	P04	P05		1.0000	33.3333	33.3333	1	100	33.3333		
6	P05	P04		1.0000	100	33.3333	1	33.3333	100		
7	P02 AND P01	P03		1.5000	50	33.3333	2	66.6667	33.3333		
8	P03 AND P01	P02		1.5000	100	33.3333	2	33.3333	66.6667		
9	P03 AND P02	P01	2	1.0000	100	33.3333	2	33.3333	100		
	P02	P01		1.0000	100	66.6667	1	66.6657	100		
0	P02 AND P01	P04		1.0000	100	66.6567	2	66.6657	100		
1	P04 AND P01	P02		1.0000	66.6667	66.6567	2	100	66.6667		
2	P04 AND P02	P01		1.0000	100	66.6567	2	66.6657	100		
3	P03 AND P01	P04	2	1.0000	100	33.3333	2	33.3333	100		
4	P04 AND P01	P03		1.0000	33.3333	33.3333	2	100	33.3333		
5	P04 AND P03	P01		1.0000	100	33.3333	2	33.3333	100		
16	P04 AND P01	POS		1.0000	33.3333	33.3333	2	100	33.3333		

Figure 4-24. Model results

STEP 9: Filtering rules with specified criteria.

You can use the More tab to filter rules based on filter criteria such as Minimum Lift, Minimum Support(%), Minimum Confidence(%), Maximum Items In Rule, and Minimum Items In Rule (Figure 4-25).

Attribute P01	Fiter
P01	
	d= Consequent

Figure 4-25. Rules filter options

Case Study—Market Basket Analysis

"I don't see smiles on the faces of people at Whole Foods."

-Warren Buffett

Market basket analysis is often used by retailers to know what their customers buy, and they use this information to make customers happy. Every shopper's basket has a lot of information and a story to tell. Whether the customer has a weird choice of products or the customer is in some sort of shopping mission are some of the areas that can only be known from the products they stock in their shopping baskets. Use of association rule analysis is a core module for market basket analysis to discover various kinds of insights out of the data. A retailer can use this information to

- 1. Identify the products that are purchased together
- 2. Design recommendations for upselling and cross-sell campaigns
- 3. Design store layout and planograms
- 4. Know the shopping mission that drives customers to the store
- 5. Identify the driver items

All these insights are helpful for inventory planning and stocking up on the right products that are in demand. This avoids product stock out, and achieves customer satisfaction and greater operational efficiency.

In this section, I will create a product recommendation engine for a hypothetical retail giant Walstar Inc.

Business Understanding

Walstar is a multinational retail corporation that runs chains of large department stores. Over the last decade, the company had lost customers to new entrants in the market. The company is well known for its low pricing and high-value products. Recently, Walstar's profits have slid by 7%, and its same-store sales are falling. To maximize its profit, Walstar's business analysts believe it is essential to maximize the sales revenue and minimize all associated costs. Some of the methods that the team has identified to increase sales revenue include

- Retaining the existing customers
- Growing the share of the wallet
- Improving the impact of promotional campaigns and better meeting customer expectations

All these goals are better aligned when the customers are lured to buy more items from the store. You, being a data scientist, suggested building a product recommendation engine for Walstar Inc. Nowadays, recommendation engines are quite common for online stores. However, for physical retail stores, the point where personalized recommendations can be given is at the POS (point-of-sale) counters. POS counters are where a retail transaction is completed. Therefore, the designed recommendation engine has to be associated with some discount to make the customer remember to return to the store and make the purchase. Providing relevant recommendations at the customer touch points is a key driver in retaining existing customers.

The recommendation engine to be developed for Walstar Inc. attempts to maximize sales, integrating product information with customer data to offer relevant and personalized recommendations.

The developed product recommender module should also be agile at decisionmaking, as it is to be installed at the POS counters during the customer checkout process. Based on the current purchase by the customer, the system would recommend a list of products, which are associated with discounts. There would also be a discount's expiration date to increase the probability of a customer returning for the purchase. This also helps to have an estimated date of purchase, which can be used for planning the inventory. The salient features of the product recommender module would be the ability to seamlessly integrate with the order a management module that runs on the Oracle database.

Data Understanding

The team at Walstar Inc. liked the idea of a product recommendation engine. You are provided access to their Order Management database. Table 4-5 shows a brief of the metadata of the useful tables in their sales database:

Table	Description
DEMO_PURCHASE_TRANS	Contains the history of purchase transactions
DEMO_PURCHASE_PRODUCTS	Has product details information
DEMO_STORES	Has information on Walstar's stores

 Table 4-5.
 Metadata for Sales history

Data Preparation

The following is a list of attributes that are required to create a product recommendation engine for Walstar:

- Transaction Id: To uniquely identify each purchase transaction
- Item: The sold products
- Purchase Quantity: The quantity of products sold

The following attributes are not required for market basket analysis but for building the personalized product recommendation engine:

- Customer Id: Unique customer identifier
- Store Id: To identify the store where the purchase was made

Based on this knowledge, you create a database view DEMO_ASSOC_PUR_V that provides you a result set with the previously mentioned attributes. (see Figure 4-26)

```
CREATE OR REPLACE VIEW DEMO_ASSOC_PUR_V AS
select dpt.transaction_id,dpt.customer_id,dpt.store_id,dpp.item,dpt.purchase_qty
from DEMO_PURCHASE_TRANS dpt,
DEMO_PURCHASE_PRODUCTS dpp
where dpt.item_id=dpp.item_id
```

Figure 4-26. View definition for DEMO_ASSOC_PUR_V

Data Modeling

A two-step process as shown in Figure 4-27 is designed to solve the problem of building a robust recommendation system. First, a market basket analysis is carried out to find the product association rules and this is stored in Walstar's database system. Next, the rules along with other sales data are used at the POS in real time to recommend products to the customers.

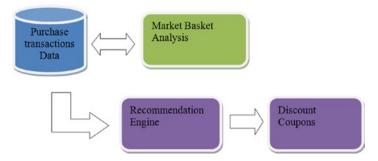


Figure 4-27. High-level architecture of product recommender engine

This two-step process would help to target the customers better by a lift in the purchase probability, which would eventually help to reduce the costs associated with the promotional discounts and marketing efforts.

Note In this chapter, I will go through the market basket analysis part of the recommendation engine. I will discuss on the second part when we walk through the recommendation engines in Chapter 7.

The application demonstration is coded using PLSQL and Oracle R Enterprise to showcase the capabilities of PLSQL with R integration. This can also be prepared using SQL Developer GUI.

High-Level Technical Overview

A PLSQL package DEMO_ASSOC_MODELS_PUB is developed to prepare the market basket analysis module of the product recommendation engine. As shown in Figure 4-28, it has the components to build models and insert the results into a database table.

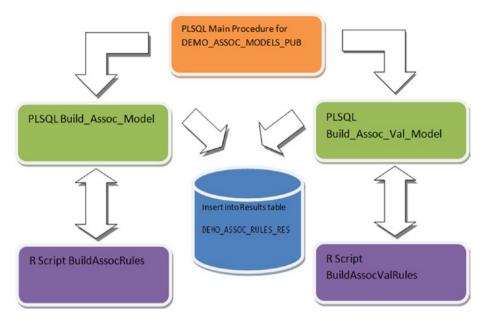


Figure 4-28. High-level technical architecture

The main procedure of DEMO_ASSOC_MODELS_PUB package drives the application. It accepts one parameter (p_model_type), which is required to conditionally decide whether to execute an existence-based or a value-based association rule model.

```
Procedure MAIN(p model type In Varchar2)
IS
                    VARCHAR2(30):= 'Build Assoc Model';
   1 method name
        l data view
                        VARCHAR2(200);
        1 return status VARCHAR2(10);
        1 return msg
                        VARCHAR2(4000);
BEGIN
      LOG MESSAGE('Start of '||G PACKAGE NAME||'.'||1 method name);
-- Assign the view name to the l data view variable
        1 data view :='DEMO ASSOC PUR V';
-- Condition to check model type: Value/Existence
        IF p model type='VALUE' then
-- Invoke the Build Assoc Val Model for value based model
           Build Assoc Val Model(p data view => 1 data view,
                                  x return status => 1 return status,
                                   x return msg => l return msg);
        ELSE
```

Procedure Build_Assoc_Model has the functions to execute the existence-based association model, interface the PLSQL package to Oracle R Enterprise environment, and insert the output to the results table in the Oracle Database. It accepts parameters described in Table 4-6.

 Table 4-6.
 Parameters for Build_Assoc_Model Procedure

Parameter Name	Description
p_data_view	The name of a database view, i.e., DEMO_ASSOC_PUR_V
x_return_status	The return status that notifies whether there were any exceptions(E) in the execution or if it completed successfully(S)
x_return_msg	The error message in case of any exceptions

```
Procedure Build_Assoc_Model(
```

p_data_view	In Varchar2,
x_return_status	Out Nocopy Varchar2,
x_return_msg	OUT NOCOPY VARCHAR2
) IS	
l_method_name	<pre>VARCHAR2(30):= 'Build_Assoc_Model';</pre>
l_output_table	<pre>VARCHAR(30) := 'DEMO_ASSOC_RULES_RES';</pre>
l_insert_sql	VARCHAR2(32767);
l_last_update_date	DATE := SYSDATE;
l_last_updated_by	NUMBER := -1;
l_creation_date	DATE := SYSDATE;
l_created_by	NUMBER := -1;
1_mining_function VARCHAR2	2(30) := 'BuildAssocRules';

BEGIN

LOG MESSAGE('START OF '||G PACKAGE NAME||'.'||1 method name);

-- Invokes ORE function BuildAssocRules and insert the results into table DEMO_ASSOC_RULES_RES

```
l_insert_sql := 'INSERT INTO '||l_output_table||'(RESULT_ID,MODEL_TYPE,LAST_
UPDATE_DATE,LAST_UPDATED_BY,CREATION_DATE,CREATED_BY,RULES,SUPPORT,CON
FIDENCE,LIFT) '||' SELECT DEMO_ASSOC_RULES_S.NEXTVAL'||',''EXISTENCE''
,'''||l_last_update_date||''','||l_last_updated_by||','''||l_creation_
date||''','||l_created_by||',rqtab.* FROM table(rqTableEval(cursor(SELECT
* FROM '||p_data_view||'),cursor(SELECT 1 as "ore.connect" FROM
dual),'' select cast('''a'''' as VARCHAR2(4000)) "RULES",1 "SUPPORT", 1
"CONFIDENCE", 1 "LIFT" from dual'','''||l_mining_function||''')) rqtab';
```

```
LOG_MESSAGE(G_PACKAGE_NAME||'.'||1_method_name||' Dynamic insert into '||1_
output_table||' Query: '||1_insert_sql);
```

```
-- Executes the l_insert_sql statemetn
EXECUTE IMMEDIATE l_insert_sql;
```

COMMIT;

x_return_status := 'S'; LOG_MESSAGE('END OF '||G_PACKAGE_NAME||'.'||1_method_name); EXCEPTION WHEN OTHERS THEN

```
x_return_status := 'E';
x_return_msg := G_PACKAGE_NAME||'.'||1_method_name||': '||SQLERRM;
END Build_Assoc_Model;
```

Procedure Build_Assoc_Model uses rqTableEval to invoke the created ORE function BuildAssocRules. rqTableEval is a PLSQL interface function that invokes R scripts with a database table as an input. Its syntax is as follows:

The parameters for the rqTableEval interface function are described in Table 4-7.

Parameter Name	Description
Input_Cursor	Cursor that specifies the data to be used for building the models
Parameter_Cursor	List of values for the arguments specified in the ORE function
Output_Query	One of the following values: An SQL select statement to specify the column name and datatype of the returned results NULL to return a serialized data object XML to return the results in an XML file format
Script_Name	The Name of the ORE script

Table 4-7. Parameters for rqTableEval Interface Function

Procedure Build_Assoc_Val_Model has the same logic as Build_Assoc_Model procedure. However, this procedure is for creating value-based association rules.

Procedure Build_Assoc_Val	_Model(
p_data_view	In Varchar2,
x return status	Out Nocopy Varchar2,
x return msg	OUT NOCOPY VARCHAR2
) 0	
IS	
l method name	<pre>VARCHAR2(30):= 'Build Assoc Val Model';</pre>
l_output_table	VARCHAR(30) := 'DEMO_ASSOC_RULES_RES';
l_insert_sql	VARCHAR2(32767);
l_last_update_date	DATE := SYSDATE;
l_last_updated_by	NUMBER := -1;
l_creation_date	DATE := SYSDATE;
l_created_by	NUMBER := -1;
1_mining_function VARCHAR	2(30) := 'BuildAssocValRules';

BEGIN

```
LOG_MESSAGE('START OF '||G_PACKAGE_NAME||'.'||1_method_name);
```

-- Invokes ORE function BuildAssocValRules and insert the results into table DEMO_ASSOC_RULES_RES

l_insert_sql := 'INSERT INTO '||l_output_table||'(RESULT_ID,MODEL_TYPE,LAST_ UPDATE_DATE,LAST_UPDATED_BY,CREATION_DATE,CREATED_BY,RULES,SUPPORT,CONFIDEN CE,LIFT) '||' SELECT DEMO_ASSOC_RULES_S.NEXTVAL'||',''VALUE'','''||1_last_ update_date||''','||1_last_updated_by||','''||1_creation_date||''','||1_ created_by||',rqtab.* FROM table(rqTableEval(cursor(SELECT * FROM '||p_data_view||'),cursor(SELECT 1 as "ore.connect" FROM dual),'' select cast(''''a'''' as VARCHAR2(4000)) "RULES",1 "SUPPORT", 1 "CONFIDENCE", 1 "LIFT" from dual'','''||1_mining_function||''')) rqtab';

```
CHAPTER 4 ASSOCIATION RULES
```

```
LOG_MESSAGE(G_PACKAGE_NAME||'.'||1_method_name||' Dynamic insert into '||1_
output_table||' Query: '||1_insert_sql);
EXECUTE IMMEDIATE 1_insert_sql;
COMMIT;
x_return_status := 'S';
LOG_MESSAGE('END OF '||G_PACKAGE_NAME||'.'||1_method_name);
EXCEPTION WHEN OTHERS THEN
x_return_status := 'E';
x_return_msg := G_PACKAGE_NAME||'.'||1_method_name||': '||SQLERRM;
END Build Assoc Val Model;
```

BuildAssocValRules is the ORE procedure that holds the R script for building the value-based association rules model. The attribute PURCHASE_QTY, which is assigned to the item.value.column parameter, is used to create the value-based model. The model will create rules with insights such as a customer who buys six breads with two butters also buys five avocado having 10% support and 50% confidence. Here, six, two, and five are the purchase quantity.

```
begin
sys.rqScriptDrop('BuildAssocValRules');
sys.rqScriptCreate('BuildAssocValRules',
'function(dat, min.support=0.01, min.conf = 0.1, max.run.len=5)
{
library(ORE)
library(arules)
dataODF <- as.ore.frame(dat)</pre>
assoc.mod <- ore.odmAssocRules(~., dataODF, case.id.column= "TRANSACTION")</pre>
ID", item.id.column= "ITEM", item.value.column="PURCHASE OTY", min.support=
min.support,min.confidence= min.conf ,max.rule.length = max.run.len)
rules <-rules(assoc.mod)</pre>
rules <-ore.pull(rules)</pre>
as(rules, "data.frame")
}');
END;
```

BuildAssocRules is the ORE procedure that is an R script for the building association rules model. In this procedure, the rules will be created based on the products brought. For example, rules such as the customer who brought bread also brought butter with 20% support and 70% confidence would be formed.

```
begin
-- sys.rqScriptDrop drops the existing ORE script with the same name. This
script has to be commented out on the first run
sys.rqScriptDrop('BuildAssocRules');
-- sys. rqScriptCreate to create a new ORE script
sys.rgScriptCreate('BuildAssocRules',
'function(dat, min.support=0.01, min.conf = 0.1, max.run.len=5)
{
library(ORE)
librarv(arules)
dataODF <- as.ore.frame(dat)</pre>
#ore.odmAssocRules is the ORE equivalent function for ODM association rules.
The model and
#algorithims settings are similar to that described in above sections
assoc.mod <- ore.odmAssocRules(~., dataODF,case.id.column= "TRANSACTION_</pre>
ID", item.id.column= "ITEM", min.support= min.support, min.confidence= min.
conf ,max.rule.length = max.run.len)
rules <-rules(assoc.mod)</pre>
rules <-ore.pull(rules)</pre>
#Converts the rules to a data frame to be recognized by rqTableEval as
individual columns and
#inserted into the results table
as(rules, "data.frame")
}');
END;
```

Execution

Run the MAIN procedure of the DEMO_ASSOC_MODELS_PUB with VALUE as the model parameter to run the value-based association rule model as shown in Figure 4-29.

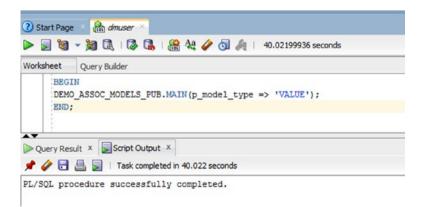


Figure 4-29. Execute the DEMO_ASSOC_MODELS package to create association rules

CHAPTER 4 ASSOCIATION RULES

Validate association rules from the DEMO_ASSOC_RULES_RES results table. The MODEL_TYPE column (see Figure 4-30) shows the newly created value-based rules. Also the results display the rules in an {Item = Quantity} format such as {BBQ sauce=1}.

	RESULT ID & MODEL TYP	LAST_UPDATE_DATE	LAST_UPDATED_BY	CREATION_DATE	CREATED_BY	RAES	SUPPORT	CONFIDENCE	() LIFT
1	2041 VALCE	19-308-16	-1	19-308-16	-1	(BBO sauce=1,850 sauce=5,850 sauce=6) => (850 sauce=2)	0.0122399020807834	0.62	4
2	2042 VALUE	19-308-16	-1	19-308-16	-1	(BBQ sauce=1,BBQ sauce=5,Bread=5) => (BBQ sauce=4)	0.0122399020807834	0.625	5 15.01838;
3	2043 VALUE	19-308-16	-1	19-JU2-16	-1	(880 sauce=1,850 sauce=5,8read=5) => (880 sauce=2)	0.0122399020807834	0.625	8
-4	2044 VALCE	19-308-16	-1	19-JUN-16	-1	(BBQ sauce=1,BBQ sauce=5,BBQ sauce=6) => (Bread=4)	0.0122399020807834	0.621	5 13
5	2045 VALCE	19-308-16	-1	19-308-16	-1	(BBQ sauce=4, Bread=6) => (BBQ sauce=5)	0.0122399020807834	0.62	\$ 10.012254
6	2046 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BBQ seuce-2,Bread=6) => (BBQ seuce-1)	0.0122399020807834	0.62	11.605113
7	2047 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BBQ sauce=1,Bread=6) => (BBQ sauce=2)	0.0122399020807834	0.62	j
8	2040 VALUE	19-308-16	-1	19-309-16	-1	(Bread=5,Bread=6) => (BBO sauce=6)	0.0122399020807834	0.62	5 12,157730
9	2049 VALUE	19-JUS-16	-1	19-300-16	-1	(Bread=5,Bread=6) => (BBQ sauce=5)	0.0122399020807834	0.62	5 10.012254
10	2050 VALUE	19-JUN-16	-1	19-303-16	-1	(BBQ seuce=2,Bread=6) => {Bread=5}	0.0122399020807834	0.62	5 10.638020
11	2051 VALUE	19-JUN-16	-1	19-JUN-16	-1	(Bread=5,Bread=6) => (BBQ sauce=2)	0.0122399020807834	0.621	j.
12	2052 VALCE	19-308-16	-1	19-302-16	-1	(880 sauce=5,8read=4) => (880 sauce=3)	0.0122399020807834	0.62	\$ 15.018382
13	2053 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BBQ ssuce-4, Bread-6) => (Bread-4)	0.0122399020807834	0.62	5 12
24	2054 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BBQ sauce=2,Bread=6) => (Bread=4)	0.0122399020807834	0.621	5 12
15	2055 VALUE	19-JUN-16	-1	19-308-16	-1	(DDO seuce-6.Dread-1) -> (DDO seuce-4)	0.0122399020007034	0.62	\$ 15.010302
16	2056 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BBQ sauce=1,BBQ sauce=6) => (Bread=4)	0.0159118727050184	0.61904761904761	12.644047
17	2057 VALUE	19-JUN-16	-1	19-JUN-16	-1	(BB0 seuce=5,BB0 seuce=6) => (BB0 seuce=4)	0.0159118727050184	0.61904761904761	14.87535

Figure 4-30. Results from the DEMO_ASSOC_RULES_RES table

Similarly, execute the procedure with p_model_type parameter as EXISTENCE (Figure 4-31).

Figure 4-31. Execute DEMO_ASSOC_MODELS_PUB for existence type of association rules models

Once the execution is complete, check the DEMO_ASSOC_RULES_RES results table for the generated rules (Figure 4-32).

	() RESULT_ID () MODEL_TYPE	() LAST_UPDATE_DATE	() LAST_UPDATED_BY	() CREATION_DATE	() CREATED_BY	() RULES	() SUPPORT	() CONFIDENCE	() LIFT
368	1660 EXISTENCE	19-JUN-16	-1	19-JUR-16	-1	(BBQ sauce, Mushrooms) => (Bread)	0.0428396572827417		1 5.7535211
389	1661 EXISTENCE	19-338-16	-1	19-JUR-16	-1	(Beets, Hushzooms) -> (Bread)	0.0416156670746634		1 5.7535211
390	1642 EXISTENCE	19-308-16	-1	19-302-16	-1	(Beets, Bread, Mushrooms) => (BBQ sauce)	0.0416154670746634		1
391	1663 EXISTENCE	19-JUN-16	-1	19-JUE-16	-1	(BBQ sauce, Beets, Mushrooms) => [Bread]	0.0416156670746634		1 5.753521
392	1664 EXISTENCE	19-308-16	-1	19-JUR-16	-1	(BBO sauce, Cucumbers) => (Bread)	0.0416156670746634		1 5,753521
293	1645 EXISTENCE	19-308-16	-1	19-302-16	-1	(BBQ sauce, Peppers) -> (Bread)	0.0416156670746634		1 5.753521
394	1666 EXISTENCE	19-JUN-16	-1	19-JUE-16	-1	(BBQ sauce, Carrots) => (Bread)	0.0416156670746634		1 5.753521
395	1667 EXISTENCE	19-JUN-16	-1	19-JUN-16	-1	(Beets, Hushrooms) => (BBQ sauce)	0.0416156670746634		1
296	1648 EXISTENCE	19-338-16	-1	19-JUE-16	-1	(Beets, Carrots) => (Bread)	0.0403916768665851		1 5.753521
397	1669 EXISTENCE	19-JUN-16	-1	19-JUE-16	-1	(Beets, Bread, Cucumbers) -> (EBQ sauce)	0.0403916768665851		1
298	1670 EXISTENCE	19-308-16	-1	19-JUR-16	-1	(BBQ sauce, Beets, Cucumbers) => (Bread)	0.0403916768665851		1 5.7535211
399	1671 EXISTENCE	19-308-16	-1	19-JUE-16	-1	(Beets, Bread, Peppers) => (BBQ sauce)	0.0403916768665851		1
400	1672 EXISTENCE	19-308-16	-1	19-JUE-16	-1	(BBO sauce, Beets, Peppers) => (Bread)	0.0403916768665851		1 5.7535211
401	1673 EXISTENCE	19-JUN-16	-1	19-JUN-16	-1	(Beets,Bread,Carrots) => (BBQ sauce)	0.0403916768665851		1
402	1674 EXISTENCE	19-308-16	-1	19-JUR-16	-1	(BBO sauce, Beets, Carrots) => (Bread)	0.0403916768665851		1 5.7535211
403	1675 EXISTENCE	19-JUN-16	-1	19-JUE-16	-1	(Bread, Hot sauce) => (BBQ sauce)	0.0403916768465851		1
404	1676 EXISTENCE	19-JUN-16	-1	19-JUE-16	-1	(BBO sauce, Hot sauce) => (Bread)	0.0403916768665851		1 5.7535211

Figure 4-32. Results from DEMO_ASSOC_RULES_RES table

Congratulations!! You have successfully created various types of association rules models and successfully stored the results back to the database tables. We can tie these rules to other business operations database tables to generate various kinds of insights.

Summary

The purpose of this chapter was to introduce you to association rules mining, which is another unsupervised data science technique that Oracle Advanced Analytics offers. Association rules are widely used in various industries to discover the relationships between different attributes. You interactively studied the Apriori algorithm in detail and the various ways through which this algorithm can be executed from different Oracle-based platforms. You also learned about the value-based and existence-based association rules and how they can be modeled using Oracle Advanced Analytics. I discussed market basket analysis, which is one of the widely used applications of association rules in the retail industry and successfully automated the modeling process from data extraction to the storage of results in the database. In Chapter 7, I will be using these rules to prepare a product recommendation engine.

CHAPTER 5

Regression Analysis

Knowing the future is something everyone wishes for. People are obsessed with knowing the future, believing that if they know tomorrow, they will adjust their activities today. It is impossible to get data from the future, but there is a way to know the future from reviewing the past. Investors always review past pricing history to influence their future investment decisions. I recently bought a house. Before buying, I wanted to know if it was a good decision to buy. Can I wait for prices to fall? Will the price appreciate in the future? I did a detailed survey of the area and the desirable features such as size of the bedrooms and the price per square foot for individual houses in various areas. This helped me to understand the factors that influence the price in different areas and also what would it be like in the years ahead. Similarly, today when I am writing this chapter, I don't know whether it will be published or not.

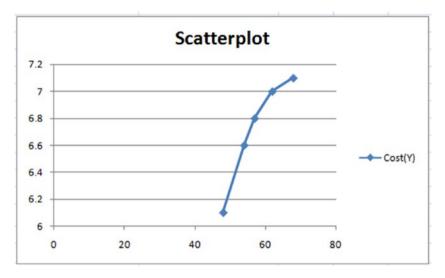
Examining the past results and the current commitment from the whole team, I think that it has a higher chance to get published. This is a prediction. Prediction is something that we use to foresee the future from similar past behavior, but there is a chance attached to it. It is not 100% accurate but provides one with an estimate. In the world of business, it helps in proactive planning. In day-to-day operations, we hear questions such as How many customers will we have next quarter? What will be the sales projection for next year? With a few attributes and data points, we can connect the dots by hand and provide a prediction. In business and the real world, we have thousands of attributes and millions of data, so how do we predict? How do we derive a relationship? Here, the opportunity lies in applying supervised machine learning algorithms. It helps us in two ways:

- The algorithms study the past data and can be used to predict the future.
- The algorithms help in determining the relationship between the variable of interest (target/dependent variable) and the factors that influence it (predictors/independent variables)

However, not all supervised algorithms can be applied to a data set. The correct application and the right technique on a polished data set yields expected results. In this chapter, I will discuss the following topics:

- Understanding relationships
- Introduction to regression analysis
- OLS (ordinary least squares) regression fundamentals

- OLS regression using Oracle Advanced Analytics
- GLM and ridge regression overview
- GLM regression using Oracle SQL and PLSQL APIs
- GLM regression using Oracle R Enterprise
- GLM regression using Oracle SQL Developer GUI
- Case Study: Sales Forecasting


Understanding Relationships

Suppose we are a detergent manufacturing company, and we have two variables—the number of units of detergent produced (X) and their cost of production (Y). We want to understand how they are related and whether we can predict cost from the number of produced detergent units. Figure 5-1 lists the data for our analysis.

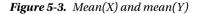
Production(X)		Cost(Y)	
	48		6.1
	54		6.6
	57		6.8
	62		7
	68		7.1

Figure 5-1. Sample detergent production data

To understand the relationship between two attributes, the first step is to figure out whether they are related. The easiest way is to represent the data visually using graphs. The plot in Figure 5-2 with production in the x axis and cost in y axis illustrates a relationship between these two variables of interest. However, it is just helpful for visualization. It doesn't help to quantify the degree or strength of a relationship between the two variables.

Figure 5-2. Scatterplot of production(x) and cost(Y)

The strength and direction of a relationship can be gauged by covariance and correlation measures. Covariance measures the degree to which two variables are related. The statistical formula for covariance is as follows:


$$\text{Covariance}(\mathbf{Y},\mathbf{X}) = \frac{\sum_{i=1}^{n} (Xi - \overline{X}) (Yi - \overline{Y})}{n-1}$$

If Covariance(X,Y) is greater than zero, the variables are positively related; and if it is less than zero, they are negatively related.

We can calculate covariance for our example data set by following these steps:

STEP 1: Calculate the mean of X and Y (Figure 5-3).

STEP 2: Calculate the deviations of actual values from the mean (Figure 5-4).

(Yi-ȳ)*(Xi	- x̄)	(Xi - X̄)*(Xi - X̄)
:	6.076	96.04
	0.456	14.44
	-0.064	0.64
	1.176	17.64
	3.876	104.04

Figure 5-4. Deviation of X and Y from their mean

STEP 3: Calculate the covariance measure using the equation in Figure 5-4 (see Figure 5-5).

Covariance	2.88
------------	------

Figure 5-5. Covariance

As the covariance measure is greater than zero, we can conclude that the number of units of detergent produced and their cost of production are positively related.

Note In SQL, the COVAR_POP function can be used to find covariance between two attributes.

However, covariance doesn't provide us with the strength of the relationship, as it is affected by the unit of measurement. For example, the production cost is in dollars and the number of detergent produced is just a count. To measure the strength, they need to be brought to the same scale, that is, standardized. Correlation is another statistical measure that is a standardized version of covariance. It measures both the strength and direction of the relationship. The correlation between the two variables X and Y is given by the following equation:

$$Correlation(Y,X) = \frac{Covariance(Y,X)}{Std.Deviation(X) \times std.Deviation(Y)}$$

Correlation always varies between -1 and +1. The closer the value of the correlation coefficient is to 1 or -1, the stronger the relationship. The sign of the correlation result indicates the direction of the relationship. The variables are positively correlated when the correlation value is greater than zero; and if it is less than zero, they are negatively correlated.

We extend the relationship analysis of our example data set by calculating the correlation measure.

STEP 4: Calculate the correlation measure using the previous equation (see Figure 5-6 for the result).

Correlation	0.049484536
-------------	-------------

Figure 5-6. Correlation

A correlation of 0.049 indicates that the relationship between units of detergent produced and their cost of production is positive. However, the strength of their relationship is low.

Note In SQL, the CORR function can be used to find the correlation between two attributes.

This correlation helped us to quantify the degree to which two variables are related. It didn't provide us with a solution to help us predict the cost from the production units. The degree of relationship measured by correlation might be a chance. We cannot judge the cause and effect relationship between X and Y using correlation. To measure the relationship between the variables and predict cost from production units, we can use regression techniques.

Regression Analysis

Regression analysis is a dominated and highly used statistical method for predictions. This branch of supervised technique works on data sets having continuous target variables. It is termed a horsepower technique in data science and is the first algorithm that data scientists try when they have a target label with continuous numeric values. It is an approach to express the relationship between a target variable (dependent) and one or more independent variables (predictors). The derived relationship helps to predict the unknown values of the target variable. Mathematically, if X is an independent variable and Y is a dependent variable, the relationship is expressed as

$$Y = a + bX + \varepsilon$$

where a is the Intercept of the best-fit regression line, b is slope of the line, and ε is the deviation of the actual and predicted values.

This equation helps us to understand the relationship between X and Y. For example, we can infer

- How much X affects Y
- The change in Y for a given value of X

Also, we can calculate the value of Y for given values of a, b, X, and ε . This is known as predicting an unknown Y from a batch of existing data for X.

We just discussed the equation for simple linear regression, as it involves only one predictor (X) and one target (Y). When there are multiple predictors involved to predict a target, it is known as multiple linear regression. The term "linear" suggests there is a basic assumption that the underlying data exhibits a linear relationship.

If we extend our previous scatter plot and add a trend line to it, we see the line of best fit. Any data points that lie on this line are perfectly predicted values. As we move away from this line, the reliability of the prediction decreases (see Figure 5-7).

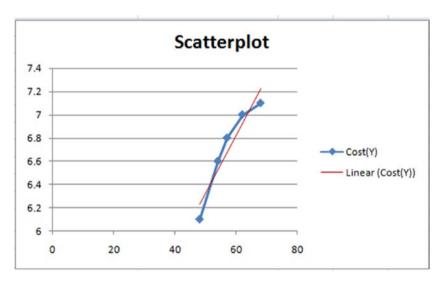


Figure 5-7. Line of best fit in a scatter plot

So how do we find the best fit line? The most common and widely used technique is the ordinary least square estimate (OLS).

Working of OLS Regression

The OLS linear regression method is the simplest approach to fit a function to the data. It finds the best-fit line by minimizing the sum of squared errors (SSE) of the data. The SSE is the sum of the deviations of actual values from the mean.

Continuing with our previous example, as we want to determine how cost is affected by the detergent production, the target or independent variable is cost (Y) and the production unit (X) is a dependent variable.

STEP 5: Find the slope. Slope can be calculated using the following equation:

Slope(a) =
$$\frac{\sum (Xi - \overline{X})(Yi - \overline{Y})}{\sum (Xi - \overline{X})^2}$$

(Yi-Ymean)*(Xi - Xmean)	(Xi-Xmean)*(Xi - Xmean)
6.076	96.04
0.456	14.44
-0.064	0.64
1.176	17.64
3.876	104.04

Figure 5-8. Deviation of X and Y from their mean

Substituting these values in the slope's equation, we get slope (b) as 0.049484536.

STEP 6: Calculate the intercept. Intercept can be calculated using the following equation:

Intercept(b) = $\overline{Y} - Slope \times \overline{X}$

Substituting the calculated values in the intercept equation gives an intercept of 3.859793814.

Substitute the values of a and b in the regression equation to form the regression formula for predicting the cost.

$$Cost(Y) = b + aX = 3.8597 + 0.04948 * X$$

Suppose we want to predict the cost of production when the unit of production is 90. We can substitute the value of X as 70 in the preceding equation and calculate the cost to be 7.32.

Cost(Y) = 3.8597 + 0.04948*90 = 3.8597 + 3.46 = 7.32

Assumptions of OLS

The simplicity of OLS calculation is overshadowed by several key assumptions. All of these assumptions on data should hold true to reap the benefits of the OLS regression techniques.

- 1. *Linearity*: The true underlying relationship between X and Y is linear.
- 2. *Homoscedastic*: The variance of residuals must be constant. The residual is the difference between the observed value and predictive value of the target.
- 3. *Normality*: The residuals/errors should be normally distributed.
- 4. *No or little multicollinearity*: The residuals/errors must be independent.

Note OLS is also affected by the presence of outliers in the data. Outlier treatment is necessary before one proceeds with linear regression modeling using OLS linear regression.

OLS Regression in Oracle Advanced Analytics

The method available in Oracle R Enterprise for performing linear regression using OLS is ore.lm(). For R users, ore.lm() is the Oracle optimized version of the lm() function, which performs calculations on an ORE frame leveraging the Oracle database as the compute engine. The central regression algorithm of all the technology stacks of Oracle Advanced Analytics uses GLM for regression analysis, which I will discuss shortly.

To perform OLS linear regression, boot up the R client and follow these steps.

Note The airfare dataset can be found in the book's source code folder. This data set has around 18 records with Fare as the target variable and distance as a predictor.

STEP 1: Load the ORE library and connect to the database.

```
library(ORE)
```

if (!ore.is.connected()) # Check if client is already connected to R
 ore.connect("dmuser", "orcl", "localhost", "sibanjan123", all=TRUE)

STEP 2: Read the sample csv file using R's built-in read.csv function.

airfare <- read.csv("C:/Users/Admin/Dropbox/analytics_book/chapter-6/data/ airfares.csv")

STEP 3: Use the ore.push function to convert the R data frame into a temporary oracle database object.

airfare_odf <- ore.push(airfare)</pre>

STEP 4: Use ore.lm for fitting the data to a linear regression model. The fitting is done in the Oracle Database leveraging database compute engine.

```
oreFit <- ore.lm(Fare ~ ., data = airfare_odf)</pre>
```

STEP 5: Interpret the summary statistics of the fitted model (see also Figure 5-9).

```
summary(oreFit)
> summary(oreFit)
Call:
ore.lm(formula = Fare ~ .,
                             data = airfare odf)
Residuals:
    Min
              10
                  Median
                               30
                                       Max
-18.265
          -4.475
                   1.024
                            2.745
                                   26.440
Coefficients:
              Estimate Std. Error t value
(Intercept) 48.971770
                          4.405493
                                      11.12 1.22e-08
Distance
              0.219687
                          0.004421
                                      49.69
                                             < 2e-16
Signif.
                            001
                                     0.01
                                               0.05
                                                     ·. ' 0.1
        codes:
Residual standard error:
                           10
                              41 on 15 degrees of freedom
                      0.994(8)
Multiple R-squared:
                                  Adjusted R-squared:
                                                         0.9936
F-statistic: 2469 on 1 and 15 DF, p-value: < 2.2e-16
```

Figure 5-9. Linear regression summary results

- 1. *Residuals*: Residual is the difference between observed and predicted values of the data. The residual should be normally distributed or close to it when plotted. This means that the average of difference between residual(or leftovers) and actual values is close to zero. As a rule of thumb, the closer the residual is to the normal distribution, the better the model.
- 2. *Estimate coefficient*: The value of slope and intercept is calculated by the ore.lm function. The intercept in the example is 48.971770, and the slope is 0.219687.
- 3. *Standard error of coefficient*: This measures the precision of the estimate coefficients and is an estimate of the standard deviation of the coefficients. As a rule of thumb, the lower the standard error of coefficient, the better the estimate. For example, we have two predictors: temperature and pressure, which measures the tensile strength of steel. Our regression model estimates standard error of coefficient for the temperature to be 0.64 and for the pressure as 0.0087. Therefore, our model was able to determine the temperature coefficient with better precision than pressure.

- 4. *t-value of the coefficients*: t-value is the ratio of the coefficient estimate over its standard error. It measures the likelihood of a coefficient to be non-zero. A larger t-value indicates that it is less likely that the actual value of coefficient will be zero, and hence it is better.
- 5. *p-value of the coefficients*: p-value is used in conjunction with a t-value for hypothesis testing. The null hypothesis for the t-test is that the coefficient has no effect on the model, which means the coefficient is equal to zero. The alternate hypothesis is that the coefficient has some effect on the model. The p-value is the observed significance level for the test. It is compared with the alpha value, which is a chosen significance level. When the p-value is less than the alpha, we accept the alternate hypothesis and reject the null hypothesis. Mostly, alpha is set to 0.05. In this case, if the p-value is less than 0.05, we accept the alternate hypothesis. So a low p-value is considered good, which indicates that the selected predictor is contributing to the predictive power of the model.
- 6. *The level of significance*: Significance is computed on the basis on the p-value. It is displayed as stars. As a rule of thumb, the more number of stars, the better the coefficient. A black dot indicates an inadequate coefficient measure and can be discarded from the model.
- 7. *Residual standard error / degree of freedom*: This is the standard deviation of the residuals. The closer the residual standard error to zero, the better the model.
- 8. *Multiple R-Squared*: Multiple R-squared or the coefficient of determination describes the percentage of variance explained by the predictors for the model. For example, if R² is 0.99, it means that the set of predictors used for the model can explain 99% of its variation. As a rule of thumb, the higher the R² value, the better the model.
- **9.** *Adjusted R-Squared*: Multiple R² artificially increases when additional predictors are introduced in the model. Adjusted R² provides same information as multiple R², but it penalizes the metrics whenever any new predictors are added. Thus, this value increases only when the newly added predictor has some effect on the predictability of the model. As a rule of thumb, the higher the adjusted R² value, the better the model.
- **10.** *F-statistics*: The F-statistic performs an F-test on the model. It takes out parameters from the model and checks the model with fewer parameters. If our model performs better than the model with fewer parameters, then the F-statistics will have a higher p-value. As a rule of thumb, a model is considered good when the F-statistics have a higher p-value.

STEP 6: Validate whether the model meets the assumptions that were discussed in the earlier section. Use the plot command to display the following plots, which helps in the validation process.

plot(oreFit)

The first plot you see is a Residuals vs. Fitted plot, which shows whether the residuals follow a linear pattern. If the residuals are symmetrically distributed around the horizontal dashed line, then they exhibit a perfect linear pattern. For our previous example, the residuals don't follow a linear model (see Figure 5-10).

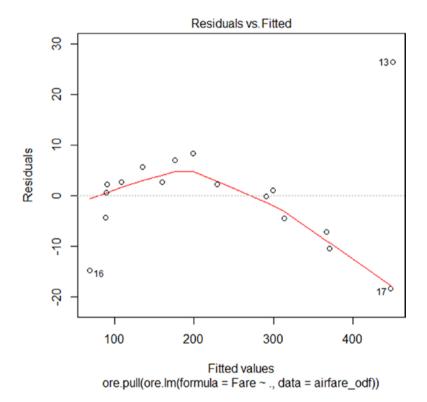
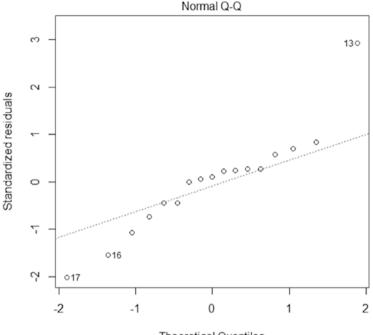



Figure 5-10. Residuals vs. Fitted plot

The second plot is a Normal Q-Q plot, which shows whether the residuals are normally distributed. If they are normally distributed, they are lined up well across the straight dashed line (see Figure 5-11).

Theoretical Quantiles

Figure 5-11. Normal Q-Q plot

The third plot is the Residuals vs. Leverage plot, which shows whether there are any influential points that affect the slope of the regression model (see Figure 5-12). The influential points (leverage points) appear at the top right corner or top left corner of the graph. These extreme cases are separated from the majority by the Cook's distance(the dashed lines). Cook's distance is useful in finding the data points that influence a regression model. We can treat the data points identified by Cook's distance as outliers and examine them separately. The regression results will be significantly altered if they are excluded from the model. In our model, the data points 17 and 13 are the influential points that affect the slope of the regression line. You can exclude these data points from your analysis and re-run the model to see a better result.

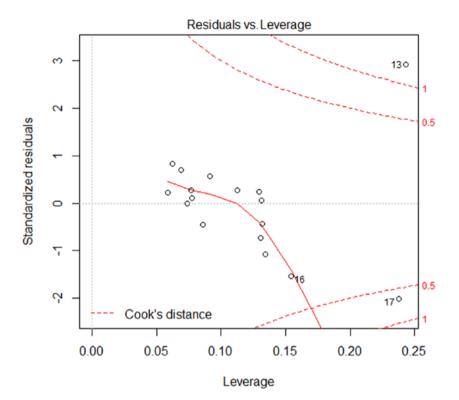


Figure 5-12. Residuals vs. Leverage plot

STEP 6: You can use the ore.predict function to predict the airfare for any new distance. It uses the model fit to derive the value for the unknown target.

ore.predict(oreFit, airfare_odf)

Note It is always vital to check two details after building a model: the quality of the model and whether the model meets the assumptions of the algorithm.

CHAPTER 5 REGRESSION ANALYSIS

As we see in our example, as well as often in the real world data sets, OLS assumptions are mostly invalidated. In such cases, there are two ways to construct a regression model:

- 1. *Use transformation functions*: The transformation function that we discussed in Chapter 2 is helpful to transform the data to meet the assumption's criteria. For example
 - a. If there are outliers, carry out the outliers treatment on the data sets using methods such as winsorizing or trimming.
 - b. If linearity assumption is not met, transform the dependent variables to straighten the relationship between the variables. Depending on the data, you can use functions such as log, square root, or reciprocals to transform the variables.
 - c. If there are scaling issues, use normalization methods such as Min-Max, Scale, or Z-score.
- 2. A better way is to use other regression techniques that relax the assumptions of the OLS regression method. For example, you can use
 - a. Polynomial regression to fit in complex nonlinear relationships.
 - b. Ridge regression when data suffers from multicollinearity.
 - c. GLM when the error distribution is other than normal.

I will discuss in detail GLM and ridge regression that are implemented in Oracle Advanced Analytics next.

GLM Regression

GLM extends the family of linear regressions by relaxing the linear relationship and normality assumptions. In GLM, the relationship between predictors and the target need not be linear. For this reason, GLM models can have target variables with distributions other than normal. Using GLM, one can create models for both continuous and categorical target variables having normal, Poisson, and exponential distributions. It can also be used for logistics regression, which is for binary classification problems.

Note Logistics regression is a classification technique used for problems where the target has binary values. I will discuss classification in detail in Chapter 6.

GLM has two ingredient functions that help to relax the assumptions of OLS:

- *Link function*: This is used for linearization. The link relates the expected value of the target/response variable to the linear function of the predictors.
- *Variance function*: This expresses variance of the predictors as a function of the target.

Ridge Regression

Ridge regression is used to relax the multicollinearity assumption, that is, when the predictors are highly correlated with each other. It does this by imposing a penalty on the size of the regression coefficients. The ridge regression coefficients try to minimize the penalized sum of square errors. There is a complexity parameter that controls the amount of shrinkage. The higher the value, the more robust coefficients become to collinearity.

Parameters to Tune the GLM Model

Oracle has provided seven parameters to tune the GLM algorithm. It has assigned all parameters with some standard values and can be overridden by specifying the accepted values for each parameter (see Table 5-1):

Parameter	Default Value	Function It Performs
Generate row diagnostics	Disabled	Generates the model-fitting diagnostics for each row.
Confidence level	0.95	The probability that a certain prediction falls within a range of values; the default is 0.95, which means if repetitive samples are taken and confidence is calculated, then 95% of the interval should contain the population mean.
Missing value treatment	Mean mode	This setting specifies the technique to treat the missing values; the default is the mean mode, which implies the missing numerical values of a variable are to be substituted with its mean, and missing categorical values are to be substituted with its mode. The other option is to delete the row having missing values.
Specify row weights column	Unchecked	Row weight is used to emphasize the values of certain attributes while building the model; by default, it is disabled. If we enable it for an attribute, then the model is biased toward this attribute.
		(continued)

Table 5-1. Parameters to Tune the GLM Model in Oracle Advanced Analytics

Parameter	Default Value	Function It Performs
Feature selection/ generalization	Unchecked	Feature selection is used to select certain important features/attributes that play an important role in building the model; by default, it is disabled.
Ridge regression	System determined	This option is to enable or disable the ridge regression functionality; by default, it is system determined, which implies the ridge regression will be turned on automatically when the system detects multicollinearity in the data set.
Approximate computation	System determined	By default, it is system determined.

GLM and Ridge Regression in Oracle Advanced Analytics

Unlike OLS regression, which is present only in Oracle R Enterprise, GLM and ridge regression are a part of the Oracle Data Miner as well as Oracle R Enterprise. GLM caters to a wide variety of data sets and hence is the preferred method available in Oracle Advanced Analytics. Ridge regression is available as a property in the algorithm settings. By default, the system determines whether to perform a GLM or a Ridge regression. Ridge regression is turned on if the system detects multicollinearity in the data set.

GLM Regression Using SQL and PLSQL

STEP 1: Create a setting table in the Oracle Database and insert model settings for a GLM. It overrides the default values for the model setting parameters. This table requires at least one record for odms_item_id_column_name to define the item ID parameter. If other records are not inserted, the model-building API proceeds with the default parameters.

The settings table has two attributes:

- setting_name: Name of the setting parameter
- setting_value: Value of the setting parameter

```
set serveroutput on
CREATE TABLE glmr settings demo (
  setting name VARCHAR2(30),
  setting value VARCHAR2(4000));
1
-- Turn on feature selection and generation
_ _
BEGIN
-- Populate settings table
  INSERT INTO glmr sh sample settings (setting name, setting value) VALUES
    (dbms data mining.algo name, dbms data mining.algo generalized linear
model);
  INSERT INTO glmr sh sample settings (setting name, setting value) VALUES
    (dbms data mining.prep auto, dbms data mining.prep auto on):
  -- turn on feature selection
  INSERT INTO glmr sh sample settings (setting name, setting value) VALUES
    (dbms data mining.glms ftr selection,
    dbms data mining.glms ftr selection enable);
  -- turn on feature generation
  INSERT INTO glmr sh sample settings (setting name, setting value) VALUES
    (dbms data mining.glms ftr generation,
    dbms data mining.glms ftr generation enable);
  /* Examples of possible overrides are shown below. If the user does not
     override, then relevant settings are determined by the algorithm
  -- specify a row weight column
    (dbms data mining.odms row weight column name,<row weight column name>);
  -- specify a missing value treatment method:
               replace with mean (numeric features) or
     Default:
               mode (categorical features)
       or delete the row
    (dbms data mining.odms missing value treatment,
      dbms data mining.odms missing value delete row);
  -- turn ridge regression on or off
     By default the system turns it on if there is a multicollinearity
    (dbms data mining.glms ridge regression,
     dbms data mining.glms ridge reg enable);
  */
END;
```

STEP 2: Create the mining model.

To create the regression model, you need to call the CREATE_MODEL Procedure of the DBMS_DATA_MINING package with the parameters in Table 5-2.

Table 5-2.	Parameters for Creating a GLM Model Using DBMS_DATA_MINING.CREATE_
MODEL	

Parameter	Mandatory	Description
model_name	Yes	To assign a meaningful model name
mining_function	Yes	The data mining function that is to be used; for regression, you need to call DBMS_DATA_ MINING. REGRESSION function
data_table_name	Yes	Name of the data table/view to be used to create the model
case_id_column_name	No	The unique record identifier for the data set; it's mandatory when row level diagnostics is applied
settings_table_name	Yes	Name of the table that contains the model settings values

The syntax for creating a new regression model using PLSQL API is as follows:

```
BEGIN
```

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'DEMO_GLMR_MODEL',
    mining_function => DBMS_DATA_MINING.REGRESSION,
    data_table_name => 'DEMO_GLMR_AIRLINE_DATA',
    case_id_column_name => 'CUSTOMER_ID',
        target_column_name => 'FARE',
    settings_table_name => 'glmr_settings_demo'
    );
END;
/
```

STEP 3: Check to see if the model is created successfully (see also Figure 5-13).

select * from user_mining_models where model_name = 'DEMO_GLMR_MODEL'

ا 🛃 💐 - 💕 🛃 ا	🔯 🖪 i 🤮 🔩 🥔	🗔 🍂 I			dmuser
Worksheet Query Builde	r				
		where model_name = 'DEMO			
Script Output × 🕨 Qu		4 seconds			
Script Output × PQu			CREATION_DATE	BUILD_DURATION	& MODEL_SIZE & COMMENT

Figure 5-13. User mining model record

STEP 4: Check the model settings that were used to create the model (see Figure 5-14)

```
SELECT setting_name, setting_value
    FROM user_mining_model_settings
    WHERE model_name = 'DEMO_GLMR_MODEL'
    ORDER BY setting_name;
```

_	📇 🝓 🙀 SQL All Rows Fetched: 7 in 0.051 seconds				
	<pre>\$ SETTING_NAME</pre>	<pre> \$ SETTING_VALUE </pre>			
1	ALGO_NAME	ALGO_GENERALIZED_LINEAR_MODEL			
2	GLMS_CONF_LEVEL	.95			
3	GLMS_DIAGNOSTICS_TABLE_NAME	GLMR_SH_SAMPLE_DIAG			
4	GLMS_FTR_SELECTION	GLMS_FTR_SELECTION_DISABLE			
5	GLMS_RIDGE_REGRESSION	GLMS_RIDGE_REG_DISABLE			
6	ODMS_MISSING_VALUE_TREATMENT	ODMS_MISSING_VALUE_MEAN_MODE			
7	PREP AUTO	ON			

Figure 5-14. Model settings for the GLM model

STEP 5: To evaluate the model result and its quality, execute the following query. This will return the value of the statistical parameters that are useful in assessing the quality of the model (see Figure 5-15). The method to interpret the important statistical measures such as adjusted R-squared, R-squared, and F-test were discussed in earlier sections.

```
SELECT *
```

FROM TABLE(dbms_data_mining.get_model_details_global('DEMO_GLMR_MODEL'))
ORDER BY global detail name;

	GLOBAL_DETAIL_NAME	<pre> GLOBAL_DETAIL_VALUE </pre>
1	ADJUSTED_R_SQUARE	0.993559542604694
2	AIC	81.5334653438706
3	COEFF_VAR	4.55969336760005
4	CORRECTED_TOTAL_DF	16
5	CORRECTED_TOT_SS	269331.882352941
6	DEPENDENT_MEAN	228.352941176471
7	ERROR_DF	15
8	ERROR_MEAN_SQUARE	108.413782093225
9	ERROR_SUM_SQUARES	1626.20673139838
10	F_VALUE	2469.29560479075
11	GMSEP	122.990425063743
12	HOCKING_SP	7.74384157808753
13	J_P	121.168344692428
14	MODEL_CONVERGED	1
15	MODEL_DF	1
16	MODEL_F_P_VALUE	0.000000000000000461829278964351
17	MODEL_MEAN_SQUARE	267705.675621544
18	MODEL_SUM_SQUARES	267705.675621544
19	NUM PARAMS	2

Figure 5-15. Model quality estimates

Creating GLM Regression Using Oracle R Enterprise

You need to boot up the R client console and use the following steps for creating association rules using Oracle R Enterprise.

STEP 1: Load the ORE library.

library(ORE)

STEP 2: Use ore.connect to connect to the database.

```
if (!ore.is.connected()) # Check if client is already connected to R
    ore.connect("dmuser", "orcl","localhost", "sibanjan123")
```

STEP 3: Read the CSV file using the read.csv function. This converts the data into a data frame in R.

```
ore.sync("DMUSER","DEMO_GLMR_AIRLINE_DATA",use.keys=TRUE)
airline df<-ore.get("DEMO GLMR AIRLINE DATA",schema="DMUSER")</pre>
```

STEP 4: Create a GLM model using the ore.odmGLM method.

```
oreGLMFit <- ore.odmGLM(FARE ~ ., data = airline df)</pre>
```

STEP 5: Summarize the model fit statistics to validate the quality of the model (see Figure 5-16).

```
summary(oreGLMFit)
```

> summary(oreGLMFit) Call: ore.odmGLM(formula = FARE ~ ., data = airline odf) Residuals: 10 Median 3Q Min Max -16.165 -4.462 1.234 3.873 27.507 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 51.323316 6.608854 7.766 1.93e-06 *** DISTANCE 0.219653 0.004538 48.400 < 2e-16 *** CUSTOMER ID -0.258175 0.529157 -0.488 0.633 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 10.69 on 14 degrees of freedom Multiple R-squared: 0.9941, Adjusted R-squared: 0.9932 F-statistic: 1172 on 2 and 14 DF, p-value: 2.6e-16

Figure 5-16. GLM regression summary results

STEP 6: To perform ridge regression, enable it manually by setting the ridge and ridge.vif parameter to TRUE. The VIF is the variation inflation factor, which detects the multicollinearity between the predictors.

oreRidgeFit <- ore.odmGLM(FARE ~ ., data = airline_odf, ridge = TRUE,ridge.
vif = TRUE)</pre>

STEP 7: As in step 5, pull out the model summary statistics to validate the quality of the model (see Figure 5-17).

```
summary(oreRidgeFit)
```

```
CHAPTER 5 REGRESSION ANALYSIS
```

```
> summary(oreRidgeFit)
Call:
ore.odmGLM(formula = FARE ~ ., data = airline odf, ridge = TRUE,
    ridge.vif = TRUE)
Residuals:
   Min
            10 Median
                            30
                                   Max
                1.234
                         3.873 27.507
-16.165 -4.462
Coefficients:
           Estimate
                      VIF
(Intercept) 51.3233 0.000
DISTANCE
             0.2197 0.000
CUSTOMER ID -0.2582 0.002
Residual standard error: 10.69 on 14 degrees of freedom
Multiple R-squared: 0.9941,
                             Adjusted R-squared:
                                                    0.9932
F-statistic: 1172 on 2 and 14 DF, p-value: 2.6e-16
```

Figure 5-17. Ridge regression summary results

Creating GLM and Ridge Regression from SQL Developer

Create a data mining project and a workflow. Refer to the steps discussed in Chapter 2 to create a new project and workflow. Once a new workflow is created, follow these steps to create a cluster model in SQL Developer.

STEP 1: Create a data source for table DEMO_GLMR_ AIRLINE_DATA (Figure 5-18). Refer to previous chapters for the details on creating a data source.

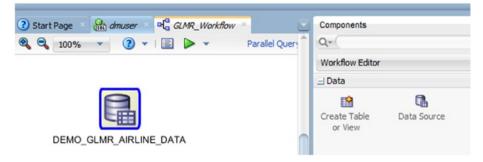


Figure 5-18. Table DEMO_GLMR_AIRLINE_DATA added as a data source node

STEP 2: To build a regression model, select and drag the Regress Build node from the Model section in Components editor to the worksheet. Connect the data source tab and the Assoc Build model as shown in Figure 5-19.

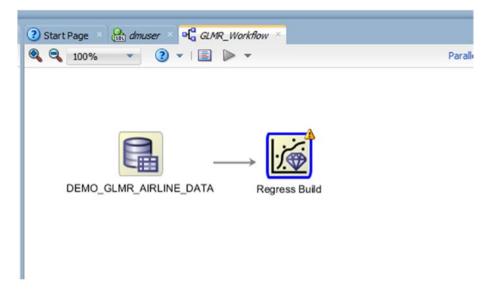


Figure 5-19. Regress Build node connected to DEMO_GLMR_AIRLINE_DATA node

STEP 3: Edit the settings of the Regress Build node (see Figure 5-20). Right-click and select Edit Settings from the list. Enter the required details for building a regression model—target and case ID. The target is the independent variable, and case ID is the unique identifier for each record. The processing will be slow if you don't enter the case ID. However, it is mandatory to select the case ID if you want the row diagnostics option to be enabled. Row diagnostics generates the model-fitting diagnostics for each row.

Edit Regr	ession Build Node	and the second
Build In	put Text	
Target:	FARE	•
Case ID:	CUSTOMER_ID	

Figure 5-20. Edit Regression Build Node

STEP 4: You can see two algorithms available for regression analysis (Figure 5-21). GLM is the one we will be using for this example. SVM is primarily a classification algorithm that can also be used for a regression problem. I will discuss on SVM in the Classifications chapter (Chapter 6). For now, you can unselect it by using the red cross icon present at the extreme right of the Model Settings row.

Model Settings			+/* 9
Name	Algorithm	Date	Data Usage
REGR_GLM_1_11	Generalized Linear Model		
REGR_SVM_1_11	Support Vector Machine		

Figure 5-21. Regression Model Settings

STEP 5: Edit the model settings for the GLM by clicking on the pencil icon in the model settings tab. The Data Usage tab has the details for the input predictors and target variable to be used for building the model. If you want to change any of the properties for the data to be used in creating the model, you can uncheck the "Use default settings" as shown in the Figure 5-22. This will enable the properties for each data attribute that can be modified.

Data Usage Alg	orithm Settings			
Use default sett	ings for REGR_GLN	4_1_11 Show	V	
Columns: 2 included	out of 3.			
Name	Data Type	Input	Mining Type	Auto Prep
CUSTOMER_ID	NUMBER	\$9\$	12	V
DISTANCE	NUMBER	÷	100	V
FARE	NUMBER	\Rightarrow	1.81	V

Figure 5-22. Data Usage tab

STEP 6: Once you are done with validating the data usage for the model, navigate to the Algorithm Setting tab next to it (see Figure 5-23). The default values that were discussed in Table 5-1 are already populated in the algorithm settings. Enter the values for the model settings of your choice to override the defaults.

Data Usage A	Algorithm Settings				
The default sett	ings should work well	for most use cases. For informa	tion on cha	nging model algo	orithm settings, dick Help
Generate Ro	ow Diagnostics				
Confidence	Level:	0.95			
Missing Value Tr	eatment:	Mean Mode	•		
Specify Row	Weights Column:	CUSTOMER_ID	*		
Feature Sele	ection			Option	
- Featu	re Generation	<system determined=""></system>	*		
Ridge Regressio	n	Disable	•	Option	
Approximate Co	omputation:	<system determined=""></system>	•		

Figure 5-23. Algorithm Settings

STEP 7: Execute the workflow and wait until it completes successfully (see Figure 5-24).

Figure 5-24. Final GLM demo workflow

STEP 8: As discussed in earlier sections, we have to evaluate the performance of a regression model both regarding its quality and accuracy in predicting the results. To measure the quality of the model, select the model from View Model sections. This opens up a new sheet in SQL Developer that has three tabs: (a) Details,(b) Coefficients, and (c) Model Results. The Coefficient tab lists the predictors, their values, and the coefficients generated by the model (see Figure 5-25).

CHAPTER 5 REGRESSION ANALYSIS

Details Coefficients Dia	gnostics Settings								
Sort by absolute val	Lue							Betch Size:	1,000
Coefficients: 2 out of 2									Qr Attribu
Attribute	Value	Stan	dardzed Coeffici	Coefficient	Standard Error	Wald Chi-Square	Pr > Chi-Square	Lower Coefficient Limit	Upper Coefficient Limit
DISTANCE	14 N	10	.99007114	0.219555054538971	0.0061	35.9494	þ	0.2039	0.2354
<intercept></intercept>			0	46.9053547786379	5.3364	8.7898	0.0003	33.1878	60.6229

Figure 5-25. Model Coefficients

The Details tab lists the model statistics to describe the quality of the model (Figure 5-26).

tails Coefficients Settings			
Details			
Name	Value		
Adjusted R-Square	.72555249		
Akaike's Information Criterion	1,399.00897641		
Coefficient of Variation	9.102169		
Corrected Total Degrees of Freedom	134		
Corrected Total Sum of Squares	15,016,838.4		
Dependent Mean	1,926.73333333		
Error degrees of freedom	131		
Error Mean Square	30,756.22374138		
Error Sum of Squares	4,029,065.31012051		
Model F Value Statistic	119.0845489		
Estimated Mean Square Error	31,699.0641045		
Hocking Sp Statistic	236.58633647		
JP Statistic	31,667.51925964		
Model Converged	Yes		
Model Degrees of Freedom	3		
Model F Value Probability	0		
Model Mean Square	3,662,591.02995982		
Model Sum of Squares	10,987,773.0898795		
Number of Parameters	4		
Number of Rows	135		
Root Mean Square Error	175.37452421		
R-Square	.73169683		
Schwarz's Bayesian Information Criterion	1,410.63007552		
Valid Covariance Matrix	Yes		

Figure 5-26. Model quality estimates

The Settings tab lists the model settings and the input variables used to create the model (see Figure 5-27).

ummary Inputs		
B		
Name	Value	
General		
Туре	Regression	
Owner	DMUSER	
Model Name	REGR_GLM_1_11	
Target Attribute	FARE	
Creation Date	6/28/16	
Duration(Minutes)	0.0167	
Size(MB)	0.0766	
Comment		
Algorithm		
Algorithm Name	Generalized Linear Model	
Automatic Preparation	On	
Confidence Level	0.95	
Enable Ridge Regression	Disable	
Feature Selection	Disable	
Missing Values Treatment	Mean for Numeric, Mode for Categorial	
Row Diagnostics Table Name	CDMR\$REGR_GLM_1_11_RD	
Variance Inflation Factor	Disable	

Figure 5-27. GLM model summary

Once the quality of the model is established, it is important to check the accuracy of the model in terms of its predictive power and performance on the test data set. To view the test results, right-click on the Regress Build model and select the model from the View Test Results option. It pops up a new screen in SQL developer that defaults to the Performance tab.

The Performance tab lists the statistical measures that are used to establish the accuracy of the model (see Figure 5-28). Table 5-3 represents a comprehensive list of the model statistics and their description.

Model Statistics	Description		
Predictive Confidence	Measures how much better the predictions are than the average model.		
Mean Absolute Error	Measures how close the predictions are to the actuals; it is the average of the absolute values of the errors/residuals.		
Root Mean Square Error	Also measures the closeness between the prediction and actuals. However, it emphasizes the large residuals more as it squares them; squaring a large number is even larger than squaring a small number.		
Mean Predicted Value	The average of the values predicted by the model on the test data set.		
Mean Actual Value	The average of the actual values of the test data set.		

CHAPTER 5 REGRESSION ANALYSIS

Figure 5-28. Performance tab

Residual is the other tab present in the View Test Results option. It displays the residual plot, which helps evaluate the normality of the residuals (Figure 5-29). The closer the residuals to the zero line, the better the prediction result.

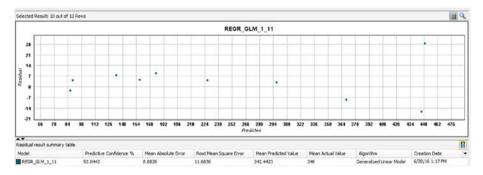


Figure 5-29. Residual tab

Guidelines for Regression Modeling

Before we move on to the case study, let's understand the methodology for approaching a regression model problem. This can be applied in general for any supervised learning algorithm.

- 1. *Data Preparation*: This is the initial stage in which you explore the data and decide on the target variable and predictors. Preprocess the data as per requirements.
- 2. Split data for cross-validation: Cross-validation is important to test the model for generalization. Using the whole data set to create a model might not perform well with an unknown or new data set. This phenomenon is known as overfitting. To overcome this, the data is split into a training set and a test set. Training set constitutes 60% of the data, and the rest (40%) is held back for the test set. The model is created on the training data set, and the results are tested on the test data.

- 3. Choose the appropriate supervised learning algorithm: A lot of understanding goes into which algorithms have to be chosen based on the training data currently available. You need to go through the nature of target variable, details of algorithms, and the problem to be solved.
- 4. *Fit the model to the training data set*: Apply the algorithm to the training data set to train the model.
- 5. *Evaluate the model statistics and tune the parameters*: Validate the model based on its statistical parameters, algorithm assumptions, and execution time. If you are not satisfied, tune the model and algorithm settings for better results.
- 6. *Evaluate the model on the test data set*: Apply the newly built model to the test data to validate it, see if it performs as expected, and if the results from the test data set are in sync with the training data. This gives you confidence that the model would perform well with the new data when it is deployed for operations.
- 7. *Apply the model to a new data set*: If there is not much difference between the results of the training and test data set, deploy the model in production and apply it to the new data set.

Case Study: Sales Forecasting

If you think Sales Forecasting is hard, try running business without a forecast. That's much harder —B-Plans

Sales forecasting is a technique employed by Organizations to predict what future sales will be like. It enables them to take informed business decisions such as what inventory levels to maintain, where and how to allocate resources, and how to identify sales opportunities. Without sales forecasts, organizations will have a hard time predicting their future success and staying competitive in the market.

According to the American Marketing Association, "Sales forecast is an estimate of Sales, in monetary or physical units, for a specified future period under a proposed business plan or program and under an assumed set of economic and other forces outside the unit for which the forecast is made."

Sales forecasts can be developed by utilizing the expertise of experienced personnel that have been in business for years. This is a qualitative method of forecasting sales. Quantitative methods such as time series and regression models are more data driven and robust methods in this dynamic world.

Time series forecast models have a time or temporal component as one of the attributes and sales as the other. They project future sales by considering only the history of past sales figures. There are many methods such as the autoregressive integrated moving average, Holt Winter's Method, and moving averages to do a time series sales forecast. I will discuss moving averages in this case study. Other methods are out of the scope of this book.

Linear regression methods are the preferred technique to understand the underlying factors that influence the sales of an organization. This helps us to prepare a forecast model based on the casual factors that affect the sales of products. Most of the time, both the time series and linear regression techniques are used to design a robust sales forecast model.

In this section, we will create a sales forecast system for a hypothetical superstore BigMart.

Business Understanding

BigMart is the world's leading retailer of an internationally recognized luxury brand in watches, fashion wear, furniture, and appliance stores. You are invited by the CEO of BigMart to develop a sales forecasting system for the future sales of watches. They have experienced low sales for watches in the past year and want to boost it up this year. The forecasting must consider the effect of its sales and the effect of the sales of other products such as fashion wear, furniture, and toys. Also, the CEO wants the forecasting engine to create short-term monthly forecast so that he can control his investment on the watches and determine whether to continue with the product category in future.

Data Understanding

BigMart has a record of the 10-year sales history of different products. You are required to build a model to predict the sales of watches in the coming months based on the previous sales of various products.

Table 5-4 shows the metadata provided to you for your forecasting exercise.

Table	Description
ORDER_DATE	A unique identifier for each record, it aggregates the sales history per month-year
WATCH	Historical sales data for watch products
FASHION_WEAR	Historical sales data for fashion wear products
FURNITURE	Historical sales data for furniture products
ELECTRONICS	Historical sales data for electronics products
JEWELRY	Historical sales data for jewelry products
TOYS	Historical sales data for toy products
MEN_CLOTHING	Historical sales data for men clothing
WOMEN_ CLOTHING	Historical sales data for women clothing
PERSONAL_CARE_ PRODUCTS	Historical sales data for personal care products

Table 5-4. Metadata for BigMart's Sales History

Data Preparation

The starting point for your sales forecast is to determine the relevant products that affect the sales of watches. To accomplish that, you need to create a new data mining project and start defining the data sources using your SQL developer. Follow the steps outlined in Chapter 2 to create a new project and a data mining workflow.

Define the BIGMART_SALES_ORDERS data source by dragging the data source node from the Data section of the Components panel and selecting the table BIGMART_ SALES_ORDERS. This table contains the data for the metadata described in the Data Understanding section. Then, drag the Filter Columns node from the Transforms panel and connect it to BIGMAR_SALES_ORDER data source (see Figure 5-30).

Figure 5-30. Filter Columns node connected to BIGMART_SALE_ORDERS node

Edit the Filter Columns node by right-clicking on it and select Edit from the list. This will pop up the list of columns available for the activity. To choose the important attributes that influence the sales of watches, we need to enable the attribute importance functionality. To accomplish that, select Settings present at the top right corner of the Edit Filter Columns Node screen (see Figure 5-31).

Columns				Q. Name
Name			Hints	Net House
	Туре	Output	Hints	
ELECTRONICS	NUMBER	->		
FASHION_WEAR	NUMBER	->		
E FURNITURE	NUMBER	->		
JEWELRY	NUMBER	->		
MEN_CLOTHING	NUMBER	->		
ME ORDER_DATE	VARCHAR2	->		
M PERSONAL_CARE_PRODUCTS	NUMBER	->		
TOYS	NUMBER.	->		
WATCH	NUMBER	-		
WOMEN_CLOTHING	NUMBER	->		

Figure 5-31. Edit Filter Columns Node

This displays another screen to define the settings to filter the columns based on their data. For example, here you can define filter criteria to discard the columns that have unique values less than 95%. This screen also has the property to enable the Attribute Importance functionality. Once it is enabled, you need to select the Target variable, Importance Cutoff, and Top N fields. The attribute importance algorithm evaluates the predictors on their power to predict the target, produces an important score based on this predictive power, and ranks them in decreasing order of their importance. Importance Cutoff and Top N are the criteria to create rules based on your requirement for choosing the variables. For example, if you want to select only those predictors that have predictive power of more than 50%, then you can set the criteria for the Importance Cutoff to be 0.5.

Figure 5-32 shows the settings that we have entered for our case study.

Data Quality	
✓ % Nulls less than or equal	95 🜩
✓ % Unique less than or equal	100 🖨
🖌 % Constant less than or equ	ual 100 🖨
Attribute Importance	
Target:	WATCH
✓ Importance Cutoff	0.5 🖨
Top N	100 🗬
Sample Technique:	System Determined 💌
Stratified Cutoff	10 🜩
Sampling (Data Quaility and Attri	ibute Importance)
Sample Size	2,000 🖨
Help	OK Cancel

Figure 5-32. Define Filter settings

Click on OK and execute the node. Once completed, edit the Filter Columns node again to view the rules generated by the Attribute Importance algorithm. The hints field in the columns section shows the rules that are created for each column. Rank indicates the level of the predictors, and Importance lists the score for each predictor based on their predictive power.

As our intention is only to consider the predictors that have an importance score of more than 0.5, we can exclude other predictors from the list to be used in building the model. To do that, click on the green arrow in the output column for each predictor having a score less than 0.5. This will append another red cross mark to the green arrow, which denotes that the variable is not going to be further used in the current workflow.

For the case study, exclude ELECTRONICS, MEN_CLOTHING, PERSONAL_CARE_ PRODUCTS, and WOMEN_CLOTHING from the list. The final screen after the activity looks like Figure 5-33.

 Show Data Quality 									
Columns								Al None 🧐 🚹 Q.+ Name	
Name	Туре	Output	Rank	Importance	% Null	% Unique	% Constant	Hints	
ELECTRONICS	NUMBER		9	0.048	0	74.5614	1.7544	A Min importance not reached	
IN FASHION_WEAR	NUMBER	->	1	0.6834	0	97.3684	0.8772		_
B FURNITURE	NUMBER	->	2	0.6394	0	98.6842	0.8772		
B JEWELRY	NUMBER	->	4	0.5263	0	90.7895	1.3158		
MEN_CLOTHING	NUMBER	-08	5	0.3649	0	94.7368	0.8772	A Min importance not reached	
ORDER_DATE	VARCHAR2	->	10	0	0	100	0.4386	A Min importance not reached	
PERSONAL_CARE_PRODUCTS	NUMBER	-08	6	0.2927	0	100	0.4386	A Min importance not reached	
III TOYS	NUMBER	->	3	0.529	0	99.1228	1.3158		
WATCH	NUMBER.	->			0	92.1053	1.3158		
WOMEN_CLOTHING	NUMBER	-08	7	0.2848	0	99.5614	0.8772	A Min importance not reached	

Figure 5-33. Edit Filter Columns Node after executing the filter node

Data Modeling

To do the regression analysis, drag the Regression node from the Model section of the Components panel. Connect it with the Filter Columns node and edit its model settings. In the Edit Regression Build node screen (Figure 5-34), you can see three tabs—Build, Input, and Text. The Build section has the information that would be required to build a regression model. Input lists the variables that are to be used for creating the model, and the Text section is for setting up the transformation for the text data. For example, if you want to use customer reviews in a regression model, then you can transform the text sentences for the documents into tokens to be passed as an input to the model.

Exclude the Support Vector Machine from the model settings list by selecting it and then clicking the cross icon.

CHAPTER 5 REGRESSION ANALYSIS

Build Input Text			
Target: WATCH	•		
Case ID: ORDER_DATE			
Case ID: ORDER_DATE			
Model Settings			+/*
	Algorithm	Date	💠 🖉 💥 😲 Data Usage
Model Settings	Algorithm Generalized Linear Model	Date	

Figure 5-34. Edit Regression Build Node

Edit the Model settings for Generalized Linear Model. This screen has two tabs— Data Usage and Algorithm Settings (see Figure 5-35). Data Usage lists all the variables that are to be used for building the model. It also shows the Data Type of the variables, whether it is input, output (denoted by the red circle symbol in front of the variable name), or a case column (denoted by a key symbol in front of the variable name). The mining type explains the kind of mining technique and automatic data preparation (ADP) to be used for each variable. For example, if for a numeric variable, ADP is turned on, then it would normalize its data.

Use default setting	A FOR DECD, CIM	1 12 Show		
	S TOF REGR_GLM_	1_12 <u>500W</u>		
Columns: 5 included ou	it of 6.			
Name	Data Type	Input	Mining Type	Auto Prep
FASHION_WEAR	NUMBER	÷	1.00	4
FURNITURE	NUMBER	÷	11	1
IEWELRY	NUMBER	÷	10	v
PORDER_DATE	VARCHAR2	38¢>	52	4
TOYS	NUMBER	÷	10	1
WATCH	NUMBER	->	1.01	V

Figure 5-35. Model Data Usuage tab

The Algorithm Settings (see Figure 5-36) default to the values that we discussed in the model settings section earlier.

Data Usage	Algorithm Settings		
The default s	ettings should work well	for most use cases. For information	on changing model algorithm settings, click Hel
Generate	Row Diagnostics		
Confiden	ce Level:	0.95	
Missing Value	e Treatment:	Mean Mode	•
Specify F	tow Weights Column:	FASHION_WEAR	~
Feature S	Selection		Option
Fea	ature Generation	<system determined=""></system>	v
Ridge Regre	ssion	<system determined=""></system>	Option
	Computation:	<system determined=""></system>	-

Figure 5-36. Algorithm Settings

Once you are happy with the settings to be used by the model, click OK to exit the settings screen and run the Regress Build node. Once it completes successfully (a green tick mark appears at the extreme right corner of the node), evaluate the metrics as discussed in the previous sections. For this model, we have Adjusted R-Square to be .79, which is good, as it explains around 79% of the variance (see Figure 5-37). The predictive confidence is 49.8074%, which is also considered better than average.

	hello_world × 9G demo_sf_workflow × @ REGR_GLM_1_12 ×			
tais Coefficients Settings				
Details				
Name	Value			
Adjusted R-Square	.79484518			
Akaike's Information Criterion	1,467.48522527			
Coefficient of Variation	8.74353604			
Corrected Total Degrees of Freedom	142			
Corrected Total Sum of Squares	19,146,160.6293706			
Dependent Mean	1,902.17482517			
Error degrees of freedom	138			
Error Mean Square	27,661.45806404			
Error Sum of Squares	3,817,281.21283752			
Model F Value Statistic	138.54005256			
Estimated Mean Square Error	28,668.1764347			
Hocking Sp Statistic	201.90845302			
JP Statistic	28,628.64191243			
Model Converged	Yes			
Model Degrees of Freedom	4			
Model F Value Probability	0			
Model Mean Square	3,832,219.85413334			
Model Sum of Squares	15,328,879.4165334			
Number of Parameters	S			
Number of Rows	143			
Root Mean Square Error	166.31734144			
R-Square	.80062419			
Schwarz's Bayesian Information Criterion	1,482.29944842			
Valid Covariance Matrix	Yes			

Figure 5-37. Model Quality Estimates

CHAPTER 5 REGRESSION ANALYSIS

Details Coefficients Setti	ngs						
Sort by absolute value	e				Eetch S	ze:	1,000 D Query
Coefficients: 5 out of 5							Q. (Attribute
Attribute	Value	- Standardized Coefficient	Coefficient	Standard Error	Wald Chi-Square	Pr > Chi-Square	Lower Coefficient Limit
FASHION_WEAR	1.1	.61753508	0.0488269547800666	0.0231	2.1135	0.0364	0.0031
TOYS		.43614773	0.0778808059524377	0.1286	0.6054	0.5459	-0.1765
FURNITURE		26495877	-0.0300139265638928	0.1122	-0.2675	0.7895	-0.2519
JEWELRY		.12412628	0.0744403747549986	0.1219	0.6106	0.5425	-0.1566
<intercept></intercept>		0	919.732672741994	94.5737	9.725	0	732.7318

Figure 5-38. Model Coefficients

We take a break here and think what we achieved until now. We have successfully discovered the important products (FURNITURE, JEWELRY, FASHION_WEAR, and TOYS) that affect the watch's sales volume. We then fitted the linear regression model to predict the sales of a watch, which is a function of the sales volume of these products. Now, we will predict the sales volume of all these products for the coming month (Oct-99) and use the regression model to predict the watch's sales volume.

We will use the moving averages method to forecast the sales volume of the products—FURNITURE, JEWELRY, FASHION_WEAR, TOYS, and WATCH. Moving average is a simplistic time series forecasting technique to forecast next values for a set of consecutive values. It is preferable for the short-term forecast, as it averages the successive set values for a set of K time periods. For example, if K is specified as three, then the average is calculated consecutively by considering data for three time periods at a time. As the moving averages forecasting technique is not present in Oracle Advanced Analytics, we will create an R script and interface it to Oracle for in-database computation.

We created the following R script to forecast the sales volume of the products mentioned previously using moving averages.

Drop the R script if already present. For the first-time execution, the sys.rqScriptDrop code has to be commented out from the script.

BEGIN

```
sys.rqScriptDrop('big mart mva');
```

Create the R script big_mart_mva that would be stored in the Oracle database using sys.rqScriptCreate. The function has six parameters; dat is used for sending in the proxy data for the table BIGMART_SALE_ORDERS and attr1 to attr5 would be used to pass the names of the products that are used to forecast the sales.

```
sys.rqScriptCreate('big_mart_mva', 'function(dat,attr1,
attr2,attr3,attr4,attr5) {
```

Invoke the ORE library.

library(ORE)

This function calculates the moving averages of the products. Here, n is the number of periods used to calculate the average of the values.

```
maverage <- function(x,n=3){filter(x,rep(1/n,n), sides=1)}
mv_fit_func applies the maverage function over the products and picks the
last three recent sale values.
mv_fit_func <- function(column){
   tail(maverage(eval((substitute(dat[a], list(a = column)))),3),3)
}</pre>
```

In the following, forecast1 to forecast5 variables invoke the mv_fit_func and calculate the average to forecast the sales for next month.

```
forecast1 <- mean(mv_fit_func(attr1))
forecast2 <- mean(mv_fit_func(attr2))
forecast3 <- mean(mv_fit_func(attr3))
forecast4 <- mean(mv_fit_func(attr4))
forecast5 <- mean(mv_fit_func(attr5))</pre>
```

The forecast variables are cast to a data frame for the Oracle and R Interface. This interface expects the result to be in a data frame, so that can be stored in the database in a structured format.

```
data.frame(forecast1,forecast2,forecast3,forecast4,forecast5)
}');
END;
/
COMMIT;
```

Once you compile this script in your database, you need to call this script from you data mining workflow. Drag an SQL Query node from the Data section of the Components panel and connect it to the Filter Column node. Double-click on the node to bring up the SQL script editor. This node can be used to invoke any SQL, PLSQL, and R script from the workflow. It has four tabs—Source, Snippets, PL/SQL functions, and R Scripts.

- Source lists the data sources that can be used in the function defined in this node.
- Snippets have the various built-in functions that are available in Oracle.
- PL/SQL functions can be used to invoke any custom PL/SQL package or procedure that we write.
- R scripts nodes are used to invoke R scripts that are stored in the database.

As discussed in earlier chapters, to invoke an R script from SQL or PLSQL, we need to use the R interface functions: rqEval or rqTableEval. The following query is designed using rqTableEval's signature to retrieve the product forecasts from the R script.

```
CHAPTER 5 REGRESSION ANALYSIS
```

```
select to_char(add_months(to_date(max_order_date,'Mon-YY'),1),'Mon-YY')
"ORDER_DATE",rgp.* from (select * from table(rqTableEval(
    cursor(select * from "Filter Columns_N$10002"),
    cursor(select 'FURNITURE' "attr1",
                'JEWELRY' "attr2",
                'FASHION_WEAR' "attr3",
                'TOYS' "attr4",
                'WATCH' "attr5",
                1 "ore.connect" from dual),
               'select 1 "FURNITURE_FORECAST",1 "JEWELRY_FORECAST",1 "MEN_CLOTHING_
FORECAST",1 "TOYS",1 "WATCH" from dual',
                'big_mart_mva')) )rgp,
        (select max(ORDER_DATE) max_order_date from
                "Filter Columns_N$10002") filter_columns_tab
```

Copy and paste the preceding script in the R Script tab of the SQL Query Node as shown in Figure 5-39. Click on the green tick symbol present at the top left corner of the script editor to validate the correctness of the script. If correctly validated, the Column section gets populated with the output attribute names. Click OK to exit the editor.

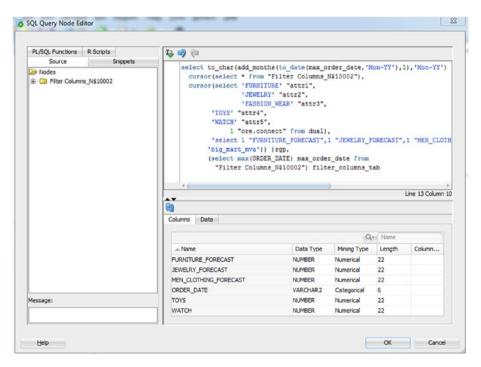


Figure 5-39. SQL Query Node Editor

The forecast that is retrieved from the script has to be persisted in a database table to be applied on the linear regression model to predict the sales volume for watches. Drag a Create Table or View node from the Data section of the Components panel and connect it with the SQL Query node. Double-click the node and enter the new table name as PREDICTOR_SALE_FORECAST. Click OK to save the details. This changes the name of the node to PREDICTOR_SALE_FORECAST node. Drag an Apply node from Evaluate and Apply section of the Component panel for applying the regression model to this new data. Connect the Apply node to the Regress Build node and PREDICTOR_SALE_FORECAST node as shown in Figure 5-40.

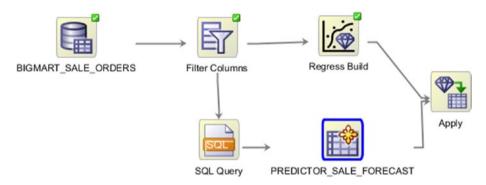


Figure 5-40. Apply node connected to Regress Build node and PREDICTOR_SALE_FORECAST

Edit the Apply node to see the results and output columns that would be available as a part of the prediction result set. The Prediction tab lists name of the column that will store the predicted values, lower bound values, and upper bound values of the forecast (see Figure 5-41).

Additional Output	t			
Automatic Settings Case	ID: <pre><none></none></pre>	•		
Output Apply Columns			90+/X	Q.+ (Column
Column	Function	Parameter(s)	Model	Node
REGR_GLM_1_12_PRED	Prediction		REGR_GLM_1_12	Regress Build
REGR_GLM_1_12_PBLW	Prediction Bounds Lower	Confidence (%): 95.0	REGR_GLM_1_12	Regress Build
REGR GLM 1 12 PBUP	Prediction Bounds Upper	Confidence (%): 95.0	REGR GLM 1 12	Regress Build

Figure 5-41. Prediction tab in Apply node

The Additional Output tab can be used to select additional output columns to be a part of the result set. This is useful to tie back the results with the primary attributes that were used to create the predictions.

Click on the plus icon in the Additional Output tab to select the variables that we want to be the part of our results (see Figure 5-42).

CHAPTER 5 REGRESSION ANALYSIS

redictions Additional Output		
Output Data Columns		💠 💥 🖏 Automatic 🔍 - Column
Column	Alias	Data Type

Figure 5-42. Additional Output tab

Let's move all the available attributes to the Selected Attributes column so that it helps us to know what values of the predictors influence the sales of the watches (Figure 5-43).

			Selected Attributes		
Name	Data Type		Name	Data Type	
			FURNITURE_FORECAST	NUMBER	
		>	I JEWELRY_FORECAST	NUMBER	
		>>>	MEN_CLOTHING_FOR	NUMBER	
		3	CRDER_DATE	VARCHAR2	
		0	INE TOYS	NUMBER	
			INTER WATCH	NUMBER	

Figure 5-43. Edit Output Data Column Dialog

Click OK twice to return to the workflow editor screen. To populate the results in the database, drag the Create Table or View node from the Data section of the component workflow. Enter the name of the output table as BIGMART_WATCH_SALE_FORECAST. The final sales forecast workflow looks like the one in Figure 5-44.

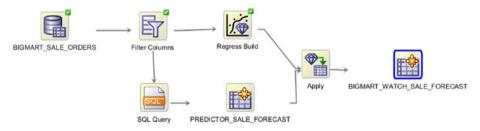


Figure 5-44. Final sales forecast workflow

Execute the workflow and wait until it completes successfully. Congratulations!! You have successfully prepared a forecast engine to forecast the sales volume of watches from the forecasts of the products that influences its sales.

Query the BIGMART_WATCH_SALE_FORECAST table to see the forecast results. The forecast for Watches is 2110 for the month of Oct-00, with a 95% confidence interval of 1430 and a 2788 sales volume (see Figure 5-45).

workane	eet Query Builder								
	select . from BIGMAR	T_WATCH_SALE_FOREC	AST						
	t Output X Query Resul	• x							
-	and the second of the second								
• 8	🙀 🙀 SQL Al Rows Fe								
	REGR GLM 1 12 PRED	REGR_GLM_1_12_PBLW	REGR_GLM_1_12_PBUP	ORDER_DATE	FURNETURE_FORECAST	& JEWELRY_FORECAST	MEN_CLOTHING_FORECAST	tovs	8 WATCH

Figure 5-45. Forecast results from BIGMART_WATCH_SALES_FORECAST table

Summary

The purpose of this chapter was to introduce you to Regression analysis, which is a supervised data science technique to predict unknown target labels from known independent attributes. OLS and GLM are widely used algorithms for making predictions with continuous numeric target labels. We discussed forecasting future sales from previous historical sales. We also touched on the process used to identify the factors that affect the sales of a particular product using linear regression. Forecasting is widely used in most of the industries. It might not always be a sales forecast, but it can be used to forecast resource requirements, costs, and cash flows. We successfully prepared a forecasting engine that automates the end-to-end forecasting process. In Chapter 6, we will learn about classification methods, which are used to predict unknown values for discrete or categorical target labels.

CHAPTER 6

Classification Methods

In the last chapter, we learned about regression analysis as one of the supervised machine learning methods. It is useful for cases in which we want to predict the future sales of a product, expenditures, or anything that has target labels with continuous numerical data. What happens when the target is a binary, categorical, or discrete variable? Can we use regression analysis for predicting these class labels or do we have any other methods? For example, how would we predict whether a customer is going to churn or not churn, whether a particular promotional activity is going to be successful, or decide whether to sanction a loan to a customer? Regression analysis is not useful in these cases, as they violate linearity assumptions I discussed in Chapter 5. To deal with such situations, we have classification methods. The classification method is another form of supervised machine learning algorithm that is used to predict targets with noncontinuous values. The classification algorithms are known as classifiers, as they identify the set of categories that subsets of data support and use this information to assign a class to an unidentified or unknown target label. Classification finds its applications in various industries such as

- Manufacturing; classifiers can be deployed to predict quality or yield of a product
- Customer relationship functions; classifiers can be used to conduct customer churn analysis for identifying potential customers
- Human resources (HR) functions; classifiers can be deployed to proactively identify high-value employees leaving an organization
- Patient diagnostics; classification can be used to identify medical syndromes based on medical history
- And much more

In this chapter, you will learn about classification methods for data science as per the following outlined topics:

- Overview of classification techniques
- Fundamentals of logistic regression, Naïve Bayes, decision trees, and Support Vector Machines (SVM)
- Some techniques to choose the best classification model

- Create classification models using Oracle Advanced Analytics
- Finally, we run through a case study to predict customer churn for a telecommunication organization

Overview of Classification Techniques

Like all supervised methods, classification techniques also require targets with prelabeled classes for training the classifier. For example, if we want to design a classifier for predicting customer churn, then we need past historical data with an indicator to annotate whether the customer churned in the past or not. The classifier for this particular use case can be termed as a "binary" classifier, as it has just two class labels: that is, churned or not churned. When there are more than two class labels, a "multinomial" classifier is used. For example, the quality of a product can be on target, within limits, or above limits. In such cases, we need to prepare a classifier that can identify multiclass targets. However, all classifier algorithms are not one-size-fits-all type. For instance, a binary logistic regression cannot be used for classification algorithms such as SVM and decision trees that can also be used. In the following sections, you will understand the concepts for various classification algorithms and metrics present in the Oracle Advanced Analytics product, which will help to choose the best classifier for our classification task.

Logistic Regression

Logistic regression can be thought of as an extension to linear regression algorithms. It primarily works like that of a linear regression, but it is designed for discrete or categorical outcomes. Logistic regression is used in the case of discrete target variables such as binary responses. In the case of binary responses, some of the assumptions of linear regression given following are not met:

- The target and predictor variables don't follow a linear relationship.
- The error terms are heteroscedastic, which means the size of error varies across the values of predictors.
- The residuals are not normally distributed.

In logistic regression, the target(Y part I discussed in Chapter 5) is transformed to the log of its odds ratio to fit the regression equation as shown here:

$$\log\left(\frac{P}{(P-1)}\right) = a + bX$$

The odds ratio reflects the likelihood or probability of occurrence of a particular event against the likelihood of that same event not taking place. If P is the probability of the occurrence of one event/class, p - 1 is the probability of the occurrence of the second event/class.

You can understand the transformed target $\log\left(\frac{P}{(P-1)}\right)$ by taking an example of a

target with two possible outcomes (No or Yes) of customers buying shoes when given a special discount. Let's say, out of 9 customers, 6 brought shoes when given a discount, and 3 did not buy the shoes (see Figure 6-1).

Discount	Buys_shoes
5%	NO
10%	YES
10%	YES
5%	YES
10%	NO
5%	YES
5%	YES
10%	NO
10%	YES

Figure 6-1. Example data

To fit the target attribute to the preceding equation, we need to calculate the odds ratio for both of the result classes (YES/NO).

STEP 1: Calculate the probability(p) for customers who brought shoes, that is, $p(Y = Buys_shoes)$. For example, the probability of customers buying shoes would be the ratio of number of customers who brought shoes to that of the total number of customers, which is 6/9 = 0.666666667 (see Figure 6-2).

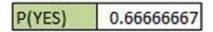


Figure 6-2. Probability of customers buying shoes

Similarly, the probability of customers not buying shoes is 3/9 = 0.333333333 as shown in Figure 6-3.

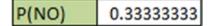


Figure 6-3. Probability of customers not buying shoes

STEP 2: Calculate the odds ratio (p/(p - 1)) for customers who brought shoes. In our example, p is the probability of customers who bought shoes; p – 1 is the probability of customers who didn't buy. Substituting the values from Figure 6-2 and Figure 6-3 in the odds ratio formula, the odds of customers buying shoes is (0.666666667/0.33333333), which equals 2 (see Figure 6-4).

Note In the case of binary classifications, there are only two choices. If p is the probability of the first choice, p - 1 is always equal to the probability of the second choice.

Figure 6-4. Odd of customers buying shoes

STEP 3: Calculate log of Odds(Yes). Log of Odds is also known as logit. This means $\log\left(\frac{P}{(P-1)}\right)$ and $\operatorname{logit}(Odds(p))$ are similar (see Figure 6-5).

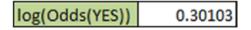


Figure 6-5. Log Odds of customers buying shoes

This transformation creates a linear relationship between the target and the predictors. However, please note that the coefficients are in terms of log odds. For example, a coefficient of 0.6 implies that a one-unit change in X results in 0.6 unit change in the log odds of Y.

Note The Oracle Advanced Analytics methods and code used for GLM regression in Chapter 5 can be used for performing logistics regression. You can use any data set provided in this chapter and use those codes to create a logistics regression model.

Naïve Bayes

Naïve Bayes is a classifier based on Bayes' theorem. Before we move on to Bayes' theorem, you need to understand the theory of conditional probabilities that drives Bayes' theorem and Naïve Bayes classifier.

Conditional probability is the probability of something happening given that something else has happened in the past. Here the probabilities of a future event are calculated based on the prior probabilities of some event that has already happened. For example, calculating the financial risk of a potential acquisition based on prior evidences of financial impact that an organization had on previous acquisitions is a possible-use case for Bayes' theorem.

Bayes' theorem or Bayes' rule is a simple mathematical formula for calculating conditional probabilities. Bayes' theorem can be stated as follows:

$$P(T|E) = \frac{P(E|T) * P(T)}{P(E)}$$

In this equation, T is the outcome or the target that we are interested in for prediction. E is the evidence of dependent variables that provides information on classifying the target. P(T) is the overall probability of target classes. P(E) is the overall probabilities of the evidences, and P(E|T) is likelihood of evidences that identifies the classes for outcomes.

Now we try to intuitively understand the basic mechanism of a Naïve Bayes classifier. In this example, we will try to predict whether a customer whom we gave a 5% discount will buy shoes. We have nine records of previous evidences of customers' decisions on buying shoes when they are given a discount of 5% and 10% (see Figure 6-6).

Discount	Buys_shoes
5%	NO
10%	YES
10%	YES
5%	YES
10%	NO
5%	YES
5%	YES
10%	NO
10%	YES

Figure 6-6. Example data set

STEP 1: Create a frequency table with the predictors/ evidences and outcome as shown in Figure 6-7.

	Buys_shoes		
	YES	NO	
5%	3	1	
10%	3	2	

Figure 6-7. Frequency table

STEP 2: Calculate the overall probabilities of the evidences and outcomes. For example, P(YES) is the number of occurrences of (Buys_shoes = YES) out of the total occurrences of Buys_shoes, which is 6/9 = 0.666666667 (see Figure 6-8).

P(YES)	0.66666667	
P(NO)	0.33333333	

Figure 6-8. Probabilities of Buy_shoes

Similarly, the overall probabilities of the discount factors 5% and 10% is calculated to be 0.4444444 and 0.55555556, respectively (see Figure 6-9).

P(5%)	0.44444444
P(10%)	0.55555556

Figure 6-9. Probabilities of discount factors

STEP 3: Calculate P(E|T) part of the Naïve Bayes equation. For example, P(5%|YES) is the number of occurrences of (Buys_ shoes = YES and Discount = 5%) out of total occurrences of Buys_shoes = YES, which is 3/6 = 0.5 (see Figure 6-10)

P(5% YES)	0.5
P(5% NO)	0.33333333
P(10% YES)	0.5
P(10% NO)	0.66666667

Figure 6-10. Prior probalities

STEP 4: Finally, calculate P(T|E) by substituting these values in the Naïve Bayes equation (see Figure 6-11).

P(YES 5%)	0.75	
P(NO 5%)	0.44444444	

Figure 6-11. Posterior probabilities

As the probability of P(YES|5%) is more than P(NO|5%), the prediction of customers buying shoes with an offered discount 5% is more than a 10% discount. Well, this is a hypothetical example. In such a scenario, I would always like to go for buying shoes with 10% discount. If we think in an another direction, the discount might not be the only factor that drives a customer to buy shoes. The shoes associated with 5% discount would be having some other attributes that make them choose these shoes over the shoes with 10% discount. If we have these kinds of scenarios, we might think to pump in more attributes related to shoes and redesign our classifier.

For demonstrating examples using Oracle Advanced Analytics, I will be using HR attrition data, which is present in the accompanying data set folder. It can also be downloaded from the IBM Watson web site. It contains around 1,800 records and denotes whether an employee attrited or not. As this a binary target class, we need to use classification algorithms to prepare the data models.

Creating a Naïve Bayes Model Using SQL and PLSQL

The Naïve Bayes method is the default algorithm for creating classifications using the DBMS_DATA_MINING package. For other algorithms, you have to insert the algorithm name in the setting table. You can follow the steps listed here to create a Naïve Bayes classifier using PLSQL APIs.

STEP 1: Create a table to define the priors for the target classes. The priors represent the distribution of each target class within the data set. By default, the priors are computed from the data distribution. However, there are some cases in which the data is imbalanced, that is, the distribution for one class supersedes the distribution of other classes. In such cases, it requires the priors to be defined for creating a good and unbiased model.

```
CREATE TABLE nb_sample_priors (
   target_value VARCHAR2(10),
   prior_probability NUMBER);
INSERT INTO nb_sample_priors VALUES ('Yes',0.65);
INSERT INTO nb_sample_priors VALUES ('No',0.35);
```

STEP 2: Create a setting table to store the Naïve Bayes algorithm settings. It overrides the default values for the model-setting parameters.

The settings table has two attributes:

- setting_name: Name of the setting parameter
- setting_value: Value of the setting parameter

```
CREATE TABLE demo_nb_settings (
   setting_name VARCHAR2(30),
   setting_value VARCHAR2(4000));
```

BEGIN

```
-- Populate settings table NB
INSERT INTO demo_nb_settings(setting_name, setting_value) VALUES
(dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
INSERT INTO demo_nb_settings VALUES
(dbms_data_mining.clas_priors_table_name, 'nb_sample_priors');
END;
/
```

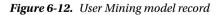
STEP 3: Create the mining model.

To create the classification model, you need to call the CREATE_MODEL procedure of the DBMS_DATA_MINING package with the parameters shown in Table 6-1.

Parameter	Mandatory	Description
model_name	Yes	Assign a meaningful model name for the model
mining_function	Yes	Data mining function that is to be used; for classification, you need to call the DBMS_ DATA_MINING. CLASSIFICATION function
data_table_name	Yes	Name of the data table/view to be used to create the model
case_id_column_name	No	Unique record identifier for the data set; if there is no case id, you can assign NULL to this parameter. However, the processing would be slow.
settings_table_name	Yes	Name of the table that contains the model settings values.

 Table 6-1.
 Parameters of the CREATE_MODEL Procedure

The syntax for creating a new regression model using PLSQL API is as follows:


```
BEGIN
```

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'demo_class_nb',
    mining_function => dbms_data_mining.classification,
    data_table_name => 'HR_EMPLOYEE_ATTRITION',
    case_id_column_name => null,
    target_column_name => 'attrition',
    settings_table_name => 'demo_nb_settings');
END;
/
```

STEP 4: Check if the model is created successfully (see Figure 6-12).

```
select * from user_mining_models where model_name = 'DEMO_CLASS_NB'
```

MODEL_NAME	MINING_FUNCTION	ALGORITHM	CREATION_DATE	BUILD_DURATION	MODEL_SIZE	COMMENTS
1 DEMO_CLASS_NB	CLASSIFICATION	NAIVE_BAYES	17-JUL-16	2	0.057	(null)

STEP 5: Check the model settings that were used to create the model (see Figure 6-13). This helps to keep a track of all the settings used to create a particular model.

```
SELECT setting_name, setting_value FROM user_mining_model_settings
WHERE model_name = 'DEMO_CLASS_NB'
ORDER BY setting_name;
```

	SETTING_NAME	SETTING_VALUE
1	ALGO_NAME	ALGO_NAIVE_BAYES
2	CLAS_PRIORS_TABLE_NAME	nb_sample_priors
3	NABS_PAIRWISE_THRESHOLD	0
4	NABS_SINGLETON_THRESHOLD	0
5	PREP_AUTO	ON

Figure 6-13. Model settings for Naïve Bayes

Once we are done with creating the model, we can validate and check the model quality using various accuracy parameters. The accuracy parameters are explained after we discuss the method to create a classifier using Oracle R Enterprise.

Creating a Naïve Bayes Classifier Using Oracle R Enterprise

You need to boot up the R client console and follow the steps listed here for creating association rules using Oracle R Enterprise.

STEP 1: Load the ORE library.

library(ORE)

STEP 2: Use ore.connect to connect to the database.

```
if (!ore.is.connected()) # Check if client is already connected to R
    ore.connect("dmuser", "orcl","localhost", "sibanjan123")
```

STEP 3: Use ore.sync to synchronize the metadata for HR_ EMPLOYEE_ATTRITION table in the database schema with R environment; and use ore.get to get the proxy ore.frame for this table to assign it to an R variable.

```
ore.sync("DMUSER","HR_EMPLOYEE_ATTRITION",use.keys=TRUE)
attrition df<-ore.get("HR EMPLOYEE ATTRITION",schema="DMUSER")</pre>
```

STEP 4: Use ore.odmNB to create a Naïve Bayes model. method.ore.odmNB is the method to call Oracle Data Miner's Naïve Bayes algorithm.

```
ore.nb.mod <- ore.odmNB(ATTRITION ~ ., attrition df)</pre>
```

STEP 5: Summarize the model statistics. This would show all the prior probabilities for the predictors used in the model (see Figure 6-14).

summary(ore.nb.mod)

```
CHAPTER 6 CLASSIFICATION METHODS
Apriori:
      NO
              Yes
0.825974 0.174026
Tables:
$AGE
    (; 33.5), [33.5; 33.5] (33.5; )
                  0.3396226 0.6603774
NO
Yes
                  0.6567164 0.3432836
$JOBLEVEL
    (; 1.5), [1.5; 1.5] (1.5; )
               0.3301887 0.6698113
NO
               0.6716418 0.3283582
Yes
$OVERTIME
           NO
                    Yes
No 0.7610063 0.2389937
Yes 0.4626866 0.5373134
$STOCKOPTIONLEVEL
    (;.5), [.5;.5] (.5; )
            0.4088050 0.5911950
NO
            0.7014925 0.2985075
Yes
$TOTALWORKINGYEARS
    (; 8.5), [8.5; 8.5] (8.5; )
               0.3993711 0.6006289
NO
               0.7014925 0.2985075
Yes
$YEARSINCURRENTROLE
    (; 4.5), [4.5; 4.5] (4.5; )
               0.5974843 0.4025157
NO
               0.8507463 0.1492537
Yes
```

Levels: [1] "No" "Yes"

Figure 6-14. Model summary

STEP 6: Use a predict function on a test data set attrition_df to make predictions from the model.

```
# Make predictions
    nb.res <- predict (ore.nb.mod, attrition df,"ATTRITION")</pre>
```

STEP 7: Compute the confusion matrix for accessing the quality of the model using the following code snippet. The confusion matrix displays the values for actual and predicted attrition of the employees (see Figure 6-15). It helps to calculate many accuracy measures to assess the quality of a model.

We have a detailed discussion on the confusion matrix and other model quality measures in the section "Assessing the model quality for classifiers."

```
with(nb.res, table(ATTRITION, PREDICTION))
```

Figure 6-15. Confusion matrix

Before moving on to other classification methods, you need to understand the measures to assess the quality for a classifier. This will be helpful for you in interpreting and using some of those measures for the Naïve Bayes classifier that we just designed as well as for other classification methods that I will go through in the next sections.

Assessing the Model Quality for Classifiers

The confusion matrix is the primary method used to validate a classifier. Most of the model quality and accuracy metrics are based on the values of the confusion matrix.

1. *Confusion matrix*: This matrix is a table that contains information about the actual and predicted values for a classifier. It typically looks like Figure 6-16 for a binary classifier.

		Prediction	
		Positive	Negative
Actuals	Postive	а	b
	Negative	С	d

Figure 6-16. Confusion matrix for a binary classifier

The data in the confusion matrix have the following meaning:

- "a" is the number of positive class predictions that were correctly identified
- "b" is the number of incorrect predictions for actual positive cases
- "c" is the number of incorrect predictions for negative cases
- "d" is the number of negative class predictions that were correctly identified
- 2. *Accuracy*: Accuracy measures how often the classifier makes a correct prediction. It is the ratio of the number of correct predictions to the total number of predictions.

Accuracy =
$$\frac{a}{a + b + c + d}$$

3. *Precision*: Precision measures the proportions of true positives that were correctly identified.

Precision =
$$\frac{a}{a+b}$$

4. *Recall*: Recall is also termed "sensitivity" or "true positive rate." It measures the proportions of true positives out of all observed positive values of a target.

Recall =
$$\frac{a}{a + c}$$

5. *Misclassification rate*: It measures how often the classifier has predicted incorrectly.

Misclassification rate =
$$\frac{c + b}{a + b + c + d}$$

6. *Specificity*: *Specificity* is also termed a "true negative rate." It measures the proportions of true negatives out of all observed negative values of a target.

Specificity =
$$\frac{d}{b+d}$$

- 7. **ROC (receiver operating characteristic) curve**: The ROC curve is used to summarize the performance of a classifier over all possible thresholds. The graph for ROC curve is plotted with sensitivity in the y axis and (1 specificity) in the x axis for all possible cutpoints (thresholds).
- 8. *AUC (area under curve)*: AUC is the area under a ROC curve. If the classifier is excellent, the sensitivity will increase, and the area under the curve will be close to 1. If the classifier is equivalent to random guessing, the sensitivity will increase linearly with the false positive rate(1 sensitivity). In this case, the AUC will be around 0.5. As a rule of thumb, the better the AUC measure, the better the model.
- **9.** *Lift*: Lift helps measure the marginal improvement in a model's predictive ability over the average response. For example, for a marketing campaign, the average response rate is 5%, but a model identifies segments with a 10% response rate. Then that segment has a lift of 2(10%/5%).

Decision Trees

Decision trees are widely used classifiers in industries for their transparency on describing the rules that lead to a prediction. They are arranged in a hierarchical tree-like structure, simple to understand and interpret. They are not susceptible to outliers. It can be well suited for cases in which we need the ability to explain the reason for a particular decision. For example, sales and marketing departments might need a complete description of rules that influences the acquisition of a customer before they start their campaign activities.

Before moving ahead with the working of a decision tree, let's visualize what a decision tree looks like (Figure 6-17) and the different components associated with a decision tree.

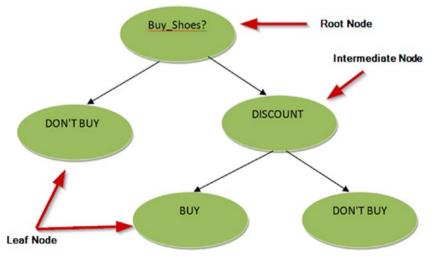


Figure 6-17. Decision tree

The top node of a decision tree is the root node. The nodes at the end of the tree are known as leaf nodes, and the nodes in between the root node and the leaf nodes are the intermediate nodes. The root node is the initial starting point for navigating the branches of the tree. Intermediate nodes derive the path through which we can comprehend the rules for predicting target classes. The navigation to any branch is based on conditions.

Let's take a scenario in which we want to understand the factors that affect customers buying the shoes. As shown in Figure 6-17, we start at the root node and traverse the intermediate nodes that lead us to the leaf node having the target value as BUY. The set of decisions that were made for navigating from the root node to the leaf node are considered as rules to be applied for a particular prediction. However, sometimes this may lead to overfitting the predictions to the data and will have poor performance in the case of new data sets. So, the decision tree can be pruned using some early stopping criteria, which I discuss in the upcoming section "Pruning Methods/Early Stopping Criteria for Decision Trees."

The process of creating a decision tree is a recursive partitioning method where it splits the training data into various groups with an objective to find homogeneous pure subgroups, that is, data with only one class. The splitting criterion used for a decision tree specifies the method to be used for splitting the data. Splitting criterion can be any of the following:

- Minimum number of observations in a node
- Information gain/ entropy-based method—impurity-based criterion that uses entropy as an impurity measure. Entropy is explained in detail in the next section.
- Gini Index—an impurity-based approach that measures the divergences between the probability distributions of the target attribute's values.

Oracle Advanced Analytics provides Gini Index and Entropy-based methods as a splitting criterion. In the following section, I will illustrate how the entropy measure is used by an algorithm to create a decision tree.

Entropy and Information Gain

Entropy is used to measure the degree of impurity in a data set. A data set is impure when it has a mixture of multiple classes. When entropy of a node is zero, it means it contains data for only one class and is pure. Entropy ranges from 0 to 1. It is maximum of 1 when the records are equally distributed among all classes, indicating the maximum level of impurity and the least interesting information. When all records belong to one class, entropy is 0, suggesting the maximum level of purity and the most interesting information. The objective of a decision tree with entropy as a splitting criterion is to find nodes with recursively decreasing entropy until it reaches a node where entropy is zero.

A formal definition of entropy is the sum of the probability of each class label multiplied by the log probability of that same label.

 $Entropy = -\sum p(x)logp(x),$

where p(x) is the probability of an outcome of a target class.

Let's consider a case in which L1 and L2 are two class labels. The entropy equation for this scenario would be as follows:

$$Entropy = -p(L1)\log p(L1) - p(L2)\log p(L2)$$

We can visualize entropy calculations as listed here:

- 1. *Case 1:* L1 has 6 observations (L1 = 6), and L2 has none (L2 = 0). Using the entropy formula, we can say $-6/6*\log(6/6) = 0$. This means the node has no impurity.
- 2. *Case 2:* L1 has 5 observations (L1 = 5) and L2 has 1 observation(L2 = 1). Using the entropy formula, we get $-1/6*\log(1/6) 5/6*\log(5/6) = 0.65$. This means the node has some entropy and can be further split.
- Case 3: L1 has 3 observations(L1 = 3) and L2 has 3 observation (L2 = 3). Using the entropy formula, we get -3/6*log(3/6) 3/6*log(3/6) = 1. This means the node is entirely impure and is the top criteria to be split.

Information Gain

The decrease in entropy results in information gain. Information gain is the amount of information gained by doing a split for creating a decision tree using the value of a particular attribute. So, if the entropy is minimum, information gain is maximum. A decision tree is constructed by finding values of attributes that return the highest information gain or lowest entropy.

To illustrate the working of a decision tree, consider an example in which we want to classify whether a customer will buy a recently published book. The sample has a target attribute as Decision (Buy/Not Buy) and two predictors: Book Type and Publisher (see Figure 6-18).

Record ID	Book Type	2011 No. 1213 No.	Decision(Buy /Not Buy)
BID1	CS	APRESS	BUY
BID2	CS	WILEY	NOT BUY
BID3	BUS	APRESS	BUY
BID4	BUS	WILEY	NOT BUY
BID5	CS	APRESS	BUY

Figure 6-18. Working of a decision tree

STEP 1: Find the attribute that would be a node of the decision tree. The first node is always the root node. To do this, calculate the entropy of the values of the target attribute.

Entropy(T) = -p(Buy)log(p(Buy))-p(Not Buy)log(p(Not Buy))

 $= -(3/5)\log(3/5) - (2/5)\log(2/5)$

= 0.97095

STEP 2: Next we need to determine the best predictor for the split that would result in maximum information gain. This can be done by subtracting the entropy of each predictor from the entropy calculated in Step 1.

GAIN(T,X) = Entropy(T) - Entropy(T,X)

We have two predictors in our example, so we need to calculate information gain for each of them. The predictor with the highest information gain would be the root node of the tree.

```
\begin{aligned} \text{Gain}(\text{T,BookType}) &= \text{Entropy}(\text{T})-\text{Entropy}(\text{T,CS})-\text{Entropy}(\text{T,BUS}) \\ &= 0.970951-(2/3)^*(-(2/2)^*\text{LOG}(2/2,2)-(1/2)^*\text{LOG}(1/2,2))-(1/3)^*(-(1/2)^*\text{LOG}(1/2,2)-(1/2)^*\text{LOG}(1/2,2)) \\ &= 0.304284 \\ \text{Gain}(\text{T,Publisher}) &= \text{Entropy}(\text{T})-\text{Entropy}(\text{T,Apress})-\text{Entropy}(\text{T,Wiley}) \\ &= 0.970951--(3/5)^*(-(3/3)^*\text{LOG}(3/3,2))-(2/5)^* \\ &\quad (-(2/2)^*\text{LOG}(2/2,2)) \\ &= 0.970951-0-0 \\ &= 0.970951 \end{aligned}
```

STEP 3: Choose the decision node. Decision node is the attribute with the largest information gain. In our example, the information gain is more for the predictor Publisher. So Publisher is selected as the first decision node (root node) for the tree.

STEP 4: Repeat Steps 1 to 3 for each value of the predictors until a branch with an entropy of 0 is found. This node becomes the leaf node, as it has only one class of the target attribute.

From the preceding steps, we saw that the decision tree algorithm natively stops when entropy is zero. However, there are some cases when we want to stop its growth forcibly in between to make it generalized for new data sets. These methods are known as pruning methods.

Pruning Methods/Early Stopping Criteria for Decision Trees

Following are some of the methods that can be used to prune a decision tree for better prediction accuracy:

- 1. Allow the decision tree to grow fully. Observe the support and confidence of each branch. Create another decision tree by removing the branches with low support and confidence. This can be done by changing the value of the maximum depth parameter of the algorithm with the desired depth. Depth is the length of the longest path from a root node to a leaf node. For example, say a model is prepared with 10 subtrees, and you find the support for the last subtree is very less. You can prepare another decision tree model by setting the parameter maximum depth to be 7.
- 2. Assign a minimum threshold value for the number of records that can be present in a node. For example, we set the minimum records in a node to 5; then a node can be formed when there are more than 5 records satisfying this rule.
- **3.** Assign minimum records for a split to happen. For example, we set minimum records in a split to be 5; then a node can be further split for achieving purity when the number of records in each split node is more than 5.

All these criterions can be set through the parameters available in Oracle Advanced Analytics for tuning a decision tree model.

Parameters to Tune a Decision Tree Model

Table 6-2 shows the parameters involved in tuning a decision tree.

Parameter	Default Value	Function It Performs
Homogeneity metric	Gini	Impurity metrics for forming decision trees; it can be either entropy or Gini.
Maximum depth	7	Maximum depth of a tree.
Minimum records in a node	10	Used to set the minimum number of records to be present in a node.
Minimum percent of records in a node	0.05	Same functionality as minimum records in a node; however, the number of records is expressed as a percent of total number of records.
Minimum records for a split	20	Used to set the minimum number of records to be considered for a split.
Minimum percent of records for a split	0.1	Same functionality as Minimum records for a split; however, the number of records is expressed as a percent of total number of records.

Table 6-2. Tuning Decision Tree Parameters

Decision Tree Modeling Using SQL and PLSQL

The steps to create a decision tree model are same as other classification models. However, the model-setting table should have a record to indicate the data mining API to use the decision tree algorithm. In this section, I demonstrate steps to create a decision tree model using primary settings and parameters.

> **STEP 1:** Create a setting table and insert model settings for a GLM. It overrides the default values for the model-setting parameters. This table requires at least one record for odms_item_id_column_name to define the item id parameter. If other records are not inserted, the model building API proceeds with the default parameters.

The settings table has two attributes:

- setting_name: Name of the setting parameter
- setting_value: Value of the setting parameter

```
CREATE TABLE demo_dt_settings (
   setting_name VARCHAR2(30),
   setting_value VARCHAR2(4000));
BEGIN
   -- Populate settings table
   INSERT INTO demo_dt_settings VALUES
    (dbms_data_mining.algo_name, dbms_data_mining.algo_decision_tree);
   INSERT INTO demo_dt_settings VALUES
    (dbms_data_mining.tree_impurity_metric, 'TREE_IMPURITY_ENTROPY');
```

END;

/

STEP 2: Create the mining model.

To create the decision tree model, you need to call the CREATE_MODEL Procedure of the DBMS_DATA_MINING package with the parameters shown in Table 6-2.

The syntax for creating a new classification model using PLSQL API is as follows:

BEGIN

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'demo_class_dt',
    mining_function => dbms_data_mining.classification,
    data_table_name => 'HR_EMPLOYEE_ATTRITION',
    case_id_column_name => null,
    target_column_name => 'attrition',
    settings_table_name => 'demo_dt_settings');
END;
/
```

STEP 3: Check if the model is created successfully (see Figure 6-19).

select * from user_mining_models where model_name = 'DEMO_CLASS_DT'

MODEL_NAME	MINING_FUNCTION	() ALGORITHM	CREATION_DATE	BUILD_DURATION	() MODEL_SIZE	COMMENTS
1 DEMO CLASS DT	CLASSIFICATION	DECISION_TREE	20-JUL-16	3	0.0628	(null)

Figure 6-19. User mining model record

STEP 4: Check the model settings that were used to create the model (see Figure 6-20).

```
SELECT setting_name, setting_value
    FROM user_mining_model_settings
    WHERE model_name = 'DEMO_CLASS_DT'
    ORDER BY setting_name;
```

	SETTING_NAME	<pre> § SETTING_VALUE </pre>
1	ALGO_NAME	ALGO_DECISION_TREE
2	PREP_AUTO	OFF
3	TREE_IMPURITY_METRIC	TREE_IMPURITY_ENTROPY
4	TREE_TERM_MAX_DEPTH	7
5	TREE_TERM_MINPCT_NODE	.05
6	TREE_TERM_MINPCT_SPLIT	.1
7	TREE_TERM_MINREC_NODE	10
8	TREE_TERM_MINREC_SPLIT	20

Figure 6-20. Model settings for decision trees

STEP 5: You can extract the rules for the decision tree model by executing the following query. The result will be XML type. Click on the pencil icon next to the Query Results in SQL Developer to view the XML (see Figure 6-21).

SELECT dbms_data_mining.get_model_details_xml('demo_class_dt') AS DT_ DETAILS from dual;

CHAPTER 6 CLASSIFICATION METHODS

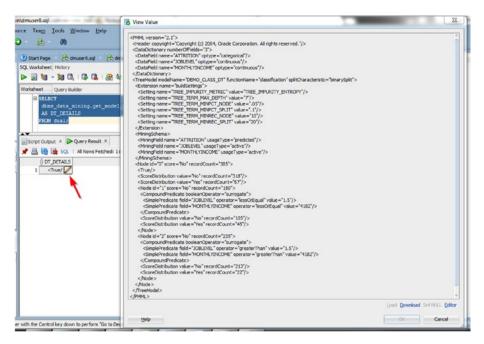


Figure 6-21. Decision tree rules XML

Decision Tree Modeling Using Oracle R Enterprise

You need to boot up the R client console and follow the next steps for creating decision trees using Oracle R Enterprise.

```
STEP 1: Load the ORE library.
```

library(ORE)

STEP 2: Use ore.connect to connect to the database.

```
if (!ore.is.connected()) # Check if client is already connected to R
    ore.connect("dmuser", "orcl","localhost", "sibanjan123")
```

STEP 3: Use ore.sync to synchronize the metadata for the HR_ EMPLOYEE_ATTRITION table in the database schema with R environment, and use ore.get to get the proxy ore.frame for this table for assigning it to an R variable.

```
ore.sync("DMUSER","HR_EMPLOYEE_ATTRITION",use.keys=TRUE)
emp_df<-ore.get("HR_EMPLOYEE_ATTRITION",schema="DMUSER")</pre>
```

STEP 4: Create a decision tree (DT) model using the ore. odmDT method.

```
dt.mod <- ore.odmDT(ATTRITION ~ ., data= emp df)</pre>
```

STEP 5: Summarize the model fit statistics to see the rules generated by the decision tree model (see Figure 6-22).

```
summary(dt.mod)
```

```
Call:
ore.odmDT(formula = ATTRITION ~ ., data = emp df)
 n = 385
Nodes:
 parent node.id row.count prediction
                                              split
                                                                surrogate
  NA 0 385 No
0 1 150 No
1
                                              <NA>
                                                                     <NA>
                               No (JOBLEVEL <= 1.5) (MONTHLYINCOME <= 4041)
2
     0 2 235 No (JOBLEVEL > 1.5) (MONTHLYINCOME > 4041)
3
      full.splits
1
            <NA>
2 (JOBLEVEL <= 1.5)
3 (JOBLEVEL > 1.5)
Settings:
                       value
prep.auto
                         on
impurity.metric impurity.gini
term.max.depth
term.minpct.node
                           7
                        0.05
term.minpct.split
                        0.1
term.minrec.node
                          10
term.minrec.split
                           20
```

Figure 6-22. Decision tree model summary

SVM

SVM is a supervised machine learning algorithm used primarily for classifications. However, it can also be used for regression problems. It is based on the concept of decision planes where it divides the data set based on decision boundaries. It finds the optimal classes by defining a hyperplane that best separates the data. Wikipedia defines hyperplane to be "a subspace of one dimension less than its ambient plane." This means that if we have a two-dimensional data set, then the hyperplane is a one-dimensional plane, that is, a line. If we use a data set that is three-dimensional, then hyperplane will be a two-dimensional plane.

Without getting too much into the mathematics of SVM, you can understand intuitively how SVM works. The SVM modeling option will do the math for you. However, you need to understand the concept and parameters that are essential to execute an SVM algorithm.

Assume you have a data set of examination results for five students. The results are based on two subjects—History and Geography. Our objective is to prepare an SVM classifier that can classify the results into Pass/Fail category for other unclassified students.

Geography	Result
49	Pass
33	Fail
37	Fail
45	Pass
49	Pass
	33 37 45

Figure 6-23. Examination results table

From the table in Figure 6-23, we can see that there are only two predictors: History and Geography. The target for the classifier is results. So clearly this is a two-dimensional data set that is linearly separable using a line. We can plot the data points on a graph as shown in Figure 6-24.

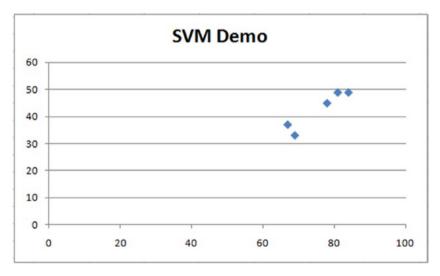


Figure 6-24. Examination result plot

The first question an SVM classifier asks is whether the data set is linearly separable, and there is a way to divide the data points into two distinct classes using a line.

As we can see from Figure 6-25, there can be multiple lines that separate the data points into two distinct classes.

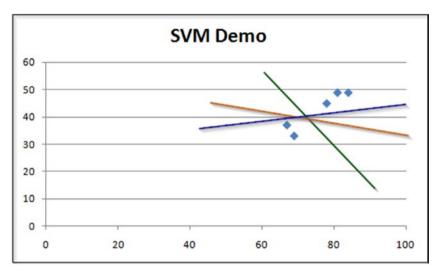


Figure 6-25. Plot of different lines that can separate examination results data

So the next question the SVM classifier asks, Is there a way to optimally divide the data points using a line? An optimal line (or hyperplane) is one that is as far as possible from the data points of each target class.

To find an optimal hyperplane, the distance between the hyperplane and the closest data point is computed. Once we have this value, it is doubled to get the margin. An optimal hyperplane is one with the biggest margin. Therefore, the final objective of the SVM can be defined as finding the optimal separating hyperplane that maximizes the margin of the training data (see Figure 6-26).

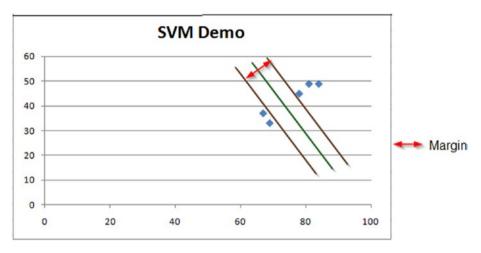


Figure 6-26. Plot displaying the optimal hyperplane that divides the examination result

Finding optimal hyperplanes for linearly separable data is easy. However, when the data is not linearly separable, the data is mapped into a new space to make it linearly separable. This methodology is known as a kernel trick, and the function used for this transformation is known as the kernel function (see Figure 6-27).

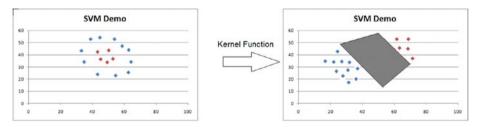


Figure 6-27. Visualization of the kernel function

Parameters to Tune the SVM Model

Oracle Advanced Analytics provides different parameters to tune the SVM algorithm, which are shown in Table 6-3 and described in the following sections.

Parameter	Default Value	Function It Performs
Kernel function	System determined	By default, the algorithm determines which kernel function to use for the model; available kernel methods are linear and Gaussian.
Tolerance value	0.001	This is the model convergence criteria; a larger tolerance value will lead to the build model faster, but it is less accurate.
Specify the complexity factor	Unchecked	By default; you need not specify any complexity factor. If you specify a complexity factor, it should be a positive number; the complexity factor is responsible for avoiding overfitting and underfitting a data set to a model.
Active learning	Checked	This restricts the SVM algorithm to use the most informative samples of the data rather than attempting to use the whole data set.

Table 6-3. Parameters to Tune the SVM Model

SVM Using SQL and PLSQL

The steps to create an SVM model are the same as other classification models. However, the model-setting table should have a record to indicate the data mining API to use in the SVM algorithm. In this section, we demonstrate steps to create a SVM model using primary settings and parameters.

STEP 1: Create a setting table and insert model settings for the SVM model as we did for previous classification models.

The settings table has two attributes:

- setting_name: Name of the setting parameter
- setting_value: Value of the setting parameter

```
set serveroutput on
CREATE TABLE demo_svm_settings (
   setting_name VARCHAR2(30),
   setting_value VARCHAR2(4000));
/
--
```

CHAPTER 6 CLASSIFICATION METHODS

```
BEGIN
   -- Populate settings table for SVM
   -- Populate settings table
   INSERT INTO demo_svm_settings(setting_name, setting_value) VALUES
   (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_
machines);
   INSERT INTO demo_svm_settings (setting_name, setting_value) VALUES
   (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
   insert into demo_svm_settings (setting_name, setting_value) VALUES
   (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
```

```
END;
```

```
/
```

STEP 2: Create the mining model.

To create the SVM model, you need to call the CREATE_MODEL Procedure of DBMS_DATA_MINING package with the parameters discussed in Table 6-3.

The syntax for creating the new SVM model using PLSQL API is as follows:

```
BEGIN
```

```
DBMS_DATA_MINING.CREATE_MODEL(
    model_name => 'demo_class_svm',
    mining_function => dbms_data_mining.classification,
    data_table_name => 'HR_EMPLOYEE_ATTRITION',
    case_id_column_name => null,
    target_column_name => 'attrition',
    settings_table_name => 'demo_svm_settings');
END;
/
```

STEP 3: Check to see if the model is created successfully (see Figure 6-28).

select * from user mining models where model name = 'DEMO CLASS SVM'

MODEL_NAME
 MINING_FUNCTION
 ALGORITHM
 CREATION_DATE
 BUILD_DURATION
 MODEL_SIZE
 COMMENTS
 DEMO_CLASS_SVM CLASSIFICATION
 SUPPORT_VECTOR_MACHINES 20-JUL-16
 C
 0.0771
 (null)

Figure 6-28. User mining model record

STEP 4: Check the model settings that were used to create the model (see Figure 6-29).

```
SELECT setting_name, setting_value
    FROM user_mining_model_settings
    WHERE model_name = 'DEMO_GLMR_MODEL'
ORDER BY setting_name;
```

	SETTING_NAME	<pre> \$ SETTING_VALUE </pre>
1	ALGO_NAME	ALGO_SUPPORT_VECTOR_MACHINES
2	PREP_AUTO	ON
3	SVMS_ACTIVE_LEARNING	SVMS_AL_ENABLE
4	SVMS_COMPLEXITY_FACTOR	0.297024
5	SVMS_CONV_TOLERANCE	.001
6	SVMS_KERNEL_FUNCTION	SVMS_LINEAR

Figure 6-29. Model settings for SVM

STEP 5: You can view the results for the SVM model by executing the following query. The result is a table of many complex data types (see Figure 6-30).

SELECT details_tab.class, attributes_tab.attribute_name aname, attributes_ tab.attribute_value aval, attributes_tab.coefficient coeff

FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM('DEMO_CLASS_SVM'))
details_tab,

TABLE(details_tab.attribute_set) attributes_tab
ORDER BY details_tab.class, ABS(attributes_tab.coefficient) DESC;

	CLASS	ANAME	4 AVAL	COEFF
1	Yes	AGE	(null)	-0.99258795541538702
2	Yes	JOBINVOLVEMENT	(null)	-0.66226064212041302
3	Yes	NUMCOMPANIESWORKED	(null)	0.58883702684391903
4	Yes	STOCKOPTIONLEVEL	(null)	-0.55294031950400502
5	Yes	JOBROLE	Manufacturing Director	-0.53102147920639498
6	Yes	JOBSATISFACTION	(null)	-0.50622663082639796
7	Yes	BUSINESSTRAVEL	Non-Travel	-0.49010776690154101
8	Yes	WORKLIFEBALANCE	(null)	-0.48963507223481501
9	Yes	DISTANCEFROMHOME	(null)	0.47972612744170201
10	Yes	ENVIRONMENTSATISFACTION	(null)	-0.471713744114856
11	Yes	BUSINESSTRAVEL	Travel_Frequently	0.39121539324841498
12	Yes	EDUCATIONFIELD	Technical Degree	0.38225694939399202
13	Yes	OVERTIME	No	-0.37058182945411999
14	Yes	OVERTIME	Yes	0.37058182945411999
15	Yes	JOBROLE	Laboratory Technician	0.36707721644860303

Figure 6-30. Model results

SVM Using Oracle R Enterprise

You need to boot up the R client console and follow these next steps for creating an SVM model using Oracle R Enterprise.

STEP 1: Load the ORE library.

library(ORE)

STEP 2: Use ore.connect to connect to the database.

```
if (!ore.is.connected()) # Check if client is already connected to R
    ore.connect("dmuser", "orcl","localhost", "sibanjan123")
```

STEP 3: Use ore.sync to synchronize the metadata for the HR_ EMPLOYEE_ATTRITION table in the database schema with R environment, and use ore.get to get the proxy ore.frame for this table to assign it to an R variable.

ore.sync("DMUSER","HR_EMPLOYEE_ATTRITION",use.keys=TRUE)
emp_df<-ore.get("HR_EMPLOYEE_ATTRITION",schema="DMUSER")</pre>

STEP 4: Create the SVM model using the ore.odmSVM method.

ore_svm.mod <- ore.odmSVM(ATTRITION ~ ., data=emp_ df,"classification",kernel.function="linear")

STEP 5: Summarize the model fit statistics to see the model coefficient estimates and the important values of the attributes used for building the model (see Figure 6-31).

summary(ore_svm.mod)

Sett	tings:			
		value		
pres	p.auto	on		
-		arning al.enable		
com	plexit	y.factor 0.297024		
con	v.tole	rance 1e-04		
kern	nel.fu	nction linear		
Coet	fficie	nts:		
(class	variable	value	estimate
1	Yes	AGE		-9.932895e-01
2	Yes	BUSINESSTRAVEL	Non-Travel	-4.907448e-01
з	Yes	BUSINESSTRAVEL	Travel_Frequently	3.915672e-01
4	Yes	BUSINESSTRAVEL	Travel Rarely	9.917761e-02
5	Yes	DAILYRATE		3.433388e-02
6	Yes	DEPARTMENT	Human Resources	3.346426e-02
7	Yes	DEPARTMENT	Research & Development	2.471865e-02
8	Yes	DEPARTMENT	Sales	-5.818291e-02
9	Yes	DISTANCEFROMHOME		4.790902e-01
10	Yes	EDUCATION		1.620376e-01
11	Yes	EDUCATIONFIELD	Human Resources	1.600444e-02
12	Yes	EDUCATIONFIELD	Life Sciences	-1.051578e-01
13	Yes	EDUCATIONFIELD	Marketing	3.959439e-02
14	Yes	EDUCATIONFIELD	Medical	-1.936601e-01
15	Yes	EDUCATIONFIELD	Other	-1.386217e-01
16	Yes	EDUCATIONFIELD	Technical Degree	3.818408e-01
17	Yes	EMPLOYEENUMBER		1.557342e-01
18	Yes	ENVIRONMENTSATISFACTION		-4.715671e-01
19	Yes	GENDER	Female	-1.176262e-01
20	Yes	GENDER	Male	1.176262e-01
21	Yes	HOURLYRATE		-9.504074e-02
22	Yes	JOBINVOLVEMENT		-6.620735e-01
23	Yes	JOBLEVEL		-1.755337e-01
24	Yes	JOBROLE	Healthcare Representative	-2.687532e-01
25	Yes	JOBROLE	Human Resources	3.346426e-02
26	Yes	JOBROLE	Laboratory Technician	3.666566e-01

Figure 6-31. Model results

A Few Other Important PLSQL APIs for Classifiers

To compute some of the model metrics, Oracle has provided PLSQL APIs shown in Table 6-4. One can use these APIs directly to compute the metrics and store them in tables.

PLSQL API	Description
DBMS_DATA_MINING.COMPUTE_CONFUSION_ MATRIX	Computes the confusion matrix
DBMS_DATA_MINING.COMPUTE_LIFT	Computes lift
DBMS_DATA_MINING.COMPUTE_ROC	Computes the ROC values; the values can be used to plot the ROC curve

Table 6-4. PLSQL APIs to Compute Model Accuracy Metrics

Oracle has also provided a cool feature known as prediction details, which can be used to see details for a particular prediction. This feature is not available in most of the analytics and data science tools. Most of the time, you want to view the details of a particular prediction such as why an employee has been predicted to attrite by the model. Traditionally, this is possible for decision trees where we can understand the reasons for a prediction by navigating through the branches of a tree. However, in Oracle Advanced Analytics, one can see these details for any model using the PREDICTION_DETAILS API. Therefore, if you want to understand the reason why an employee has been flagged as a candidate for possible attrition, you can view the details by using this API. The following SQL query uses the prediction_details API to extract the details for each prediction.

select

```
prediction(DEMO_CLASS_SVM using *) pred_value,
    prediction_probability(DEMO_CLASS_SVM using *) pred_prob,
    prediction_details(DEMO_CLASS_SVM using *) pred_details
from HR_EMPLOYEE_ATTRITION;
```

After you run this query, each prediction record has the pred_details XML results (see Figure 6-32). When the XML file is expanded, you can view the rules and ranks of each attribute that lead to a particular prediction.

CHAPTER 6 CLASSIFICATION METHODS

/orksheet Ouery Bu		0 4	🐻 View Value
SELECT D.cla FROM TABLE TABLE ORDER BY D.c	ass, A.attribute_nam 8 (DBMS_DATA_MINING.(8 (D.attribute_set) class, ABS (A.coeffice) action (DEMO_CLASS_ST	GET_MODEL_DETAI A cient) DESC;	<pre><attroute actualvalue="1" name="JOBINVOLVEMENT" rank="1/" weight=".13"> </attroute></pre> <attroute actualvalue="aboratory Technician" name="MARTALSTATUS'" rank="3" weight=".12"></attroute> <attroute actualvalue="25" name="DISTANCEFROMHOME" rank="4" weight=".092"></attroute> <
predi from HR_EMPI	iction_probability() iction_details(DEMO_ LOYEE_ATTRITION; cm_HR_EMPLOYEE_ATTR:	_CLASS_SVM usin	
Script Output ×		roords	
Script Output X 🕨	Fetched 50 rows in 0.1 se	conds	
Script Output × Script Outpu	Fetched 50 rows in 0.1 se		
Script Output X	Fetched 50 rows in 0.1 se		
Script Output × Script Output × PRED_VALUE 1 Yes 2 No	Fetched 50 rows in 0.1 se PRED_PROB 0.721925064397263	(XMLTYPE)	
Script Output × Script Output × PRED_VALUE 1 Yes 2 No	Fetched 50 rows in 0.1se PRED_PROB 0.721925064397263 0.8760165508602415	(XMLTYPE) (XMLTYPE)	
Script Output × PRED_VALUE 1 Yes 2 No 3 No 4 No	Fetched 50 rows in 0.1 se PRED_PROB 0.721925064397263 0.8760165508602415 0.8963561988914064	PRED_DETAILS	
Script Output × PRED_VALUE 1 Yes 2 No 3 No 4 No	Fetched 50 rows in 0.1se PRED_PRO8 0.721925064397263 0.8760165508602415 0.8963561988914064 0.9363191415871049	PRED_DETAILS	
Script Output X PRED_VALUE 1 Yes 2 No 3 No 4 No 5 No	Fetched 50 rows in 0.1 se	PRED_DETAILS ANUMENTIAL (XMLTYPE) (XMLTYPE) (XMLTYPE) (XMLTYPE) (XMLTYPE) (XMLTYPE)	
Script Output X PRED_VALUE Yes 2 No 3 No 4 No 5 No 6 No 7 No	Fetched 50 rows in 0.1 se	PRED_DETAILS AUDICIDE THE AUDICIDE THE AU	

Figure 6-32. Prediction details output

Choosing a Classifier

In some applications, the accuracy of a prediction is the only thing that matters. It may not be important to know how the model works. In others, the ability to explain the reason for a decision can be crucial. The choice of classification algorithm also can be based on the size of the data set and features that you have. If you only have a few samples, you might not use a complex classifier that will overfit on your data.

The commonly used technique is to try creating a bunch of models using different algorithms from sample data. Select the best model by comparing the model metrics such as accuracy measures and AUC. The higher the AUC for a model, the better it performs on that particular data set than other models; and thus, it can be used for that task. Although the accuracy of the algorithm is important, sometimes meeting an accuracy threshold is all that is required. Most important are the values in the quadrants of a confusion matrix and the context in which you are making the predictions. For example, too many false negatives in case of a fraud detection task are not acceptable; whereas in the event of medicine innovation, higher false positives are not acceptable.

The speed of building models and predicting outcomes is also of vital importance depending on the environment where the predictions are to be done. In cases where predictions are to be done in real time, accuracy can be compromised for performance.

Case Study: Customer Churn Prediction

"Good customer service costs less than bad customer service."

—Sally Gronow

Customers are the revenue creation entities for an organization. This calls for an organization to be customer-centric. Happy customers help an organization's brand build and become a part of its growth story. If any customer discontinues using your product or ceases a relationship your organization, it is a potential loss of revenue. This is known as customer churn. Besides the loss of profitability that results from a customer abandoning an organization, there is a loss of reputation in the market and the costs of initially acquiring the customer, which may not have been covered by the customer's spending to date. A business can thrive with a loyal customer base. With digitalization and everyone connected through social networks, organizations should create and manage customers who can help to create some more customers. Loyal customers help in viral marketing, and in turn, this helps acquire new customers at a very minimum cost. However, if customers discontinue, there are costs involved to target new customers and the increased cost to safeguard the brand. Acquiring a new customer is more challenging and expensive compared to retaining a current customer.

Customer Churn prediction is a most important tool for an organization's CRM (customer relationship management) toolkit. Doing it correctly helps an organization to retain customers who are at a high risk of churning. Organizations can design marketing actions and campaigns to retain these customers proactively, which contributes to eliminating the risk of customer churn.

In this case study, we will create a churn prediction model for a telecommunications company I call IndTel.

Business Understanding

IndTel has noticed a high rate of churn in recent years. The organization has developed a retention campaign, and the customer analytics team has been advised to identify the customers who have a high probability of churning. These targeted customers will then be placed in the retention campaign program to contribute to the organization's growth story.

Data Understanding

IndTel has provided you the data of past customer churn history for predicting the customers who are going to churn in the future. The metadata is as shown in Table 6-5.

Data	Meaning
CUSTOMERID	Unique identifier for a customer
GENDER	Gender (male/female)
SENIORCITIZEN	Is the customer a senior citizen?
PARTNER	Is the customer a partner of the organization?
DEPENDENTS	Number of dependents
TENURE	Number of months with the organization
PHONESERVICE	Are they using phone service?
MULTIPLELINES	Do they have multiple connections?
INTERNETSERVICE	Are they using Internet service?
ONLINESECURITY	Have they subscribed for online security?
ONLINEBACKUP	Do they use an online backup facility?
DEVICEPROTECTION	Do they have a device protection plan?
TECHSUPPORT	Did they call tech support any time?
STREAMINGTV	Did they subscribe for streaming TV?
STREAMINGMOVIES	Did they subscribe for streaming movies?
CONTRACT	Nature of the contract
PAPERLESSBILLING	Have they opted for paperless billing?
PAYMENTMETHOD	The type of payment method they have chosen
MONTHLYCHARGES	Monthly charges
TOTALCHARGES	Total charges
CHURN	Did they churn (Yes/No)?

Table 6-5. Metadata of Historical Customer Churn Data Set

Data Preparation

In this case study, we start by randomly sampling the churn data into two sets: Train and Test. Then, we first determine the relevant attributes that affect customer churn. This would help us to reduce the number of attributes to be used by the model. The attributes that don't contribute to the predictive power of the model are not useful; and having those as inputs to the model might increase its processing time unnecessarily. To accomplish that, you need to create a new data mining project and define the data source using your SQL Developer. Follow the steps outlined in Chapter 2 to create a new project and a data mining workflow. Define the DEMO_CUST_CHURN_TAB data source by dragging the data source node from the data section of the components panel and selecting the table DEMO_ CUST_CHURN_TAB. This table contains the data for the metadata described in the "Data Understanding" section. Then drag the Sample node from the Transforms panel to the workflow editor and connect it to the DEMO_CUST_CHURN_TAB data source. Edit the properties of the Sample node and rename it to Train (Figure 6-33).

Figure 6-33. Data mining workflow

Similarly, connect another Sample node to the DEMO_CUST_CHURN_TAB data source and rename it to Test (Figure 6-34).

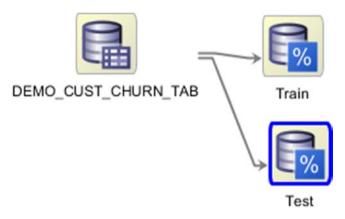


Figure 6-34. Workflow with Train and Test sample nodes

Right-click on the Test node and edit its settings. By default, the Percent of sample size is 60. Change it to 40. You can have this as any number. But as standard practice, we kept the Train sample as 60% and the Test as 40% of the data set. Select a CASE ID, which helps the sample node to uniquely identify each record (see Figure 6-35).

CHAPTER 6 CLASSIFICATION METHODS

Figure 6-35. Test node settings

Click OK to return back to the workflow editor page.

Now, drag a Filter node to the workflow editor and connect it to the Train node as shown in Figure 6-36.

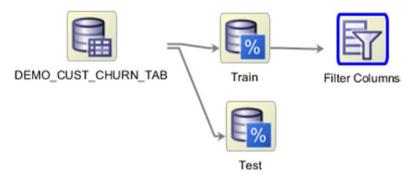


Figure 6-36. Workflow connecting Filter Columns node

Edit the Filter Columns node by right-clicking on it and select Edit from the list. This will pop up the list of columns available for the activity. To choose the important attributes that influence customer churn, you need to enable the attribute importance functionality. You can follow the detailed procedure described in Chapter 5 to enable the attribute importance functionality. Figure 6-37 is a quick recap of this step. Select Settings at the top right corner of the Edit Filter Columns Node screen.

CHAPTER 6 CLASSIFICATION METHODS

				Settings
Columns				Q.r (Name
Name	Туре	Output	Hints	-
CHURN	VARCHAR2	->		
CONTRACT	VARCHAR2	->		
CUSTOMERID	VARCHAR2	->		
DEPENDENTS	VARCHAR2	->		
DEVICEPROTECTION	VARCHAR2	->		
GENDER	VARCHAR2	->		
INTERNETSERVICE	VARCHAR2	->		

Figure 6-37. Filter column editor

Enable the attribute importance functionality, select the target attribute, and define the important cutoff value as shown in Figure 6-38.

 Data Quality 	
✓ % Nulls less than or equal	95 🖨
✓ % Unique less than or equal	95 🜩
✓ % Constant less than or equ	Jal 95
Attribute Importance	
Target:	CHURN
✓ Importance Cutoff	30 🖨
✓ Top N	100
Sample Technique:	System Determined 💌
Stratified Cutoff	10 🗬
Sampling (Data Quaility and Attri	bute Importance)
Sample Size	2,000

Figure 6-38. Filter Column Settings

Click on OK and run the node. Once completed, edit the Filter Columns node again to view the rules generated by the attribute importance algorithm. As our intention is only to consider the predictors that have importance scores of more than 0.3, we can exclude other predictors from the list to be used in building the model. For the case study, exclude GENDER, MULTIPLELINES, PHONESERVICE, and TOTALCHARGES from the list. The final screen after the activity looks like Figure 6-39.

Show Attribute Importance									Settings
Show Data Quality									
Columns								All None 🧐 🏭 Q.+ Name	
Name	Type	Output	Rank	Importance	% Null	% Unique	% Constant	Hints	
MI GENDER	VARCHAR2	-	16	0	0	0.0981	51.7901	A Min importance not reached	
INTERNETSERVICE	VARCHAR2	->	5	0.0631	0	0.1471	44,5807		
MONTHLYCHARGES	NUMBER	->	10	0.0353	0	48.7003	1.128		
MULTIPLELINES	VARCHAR2		16	0	0	0.1471	48.2099	A Min importance not reached	
M ONLINEBACKUP	VARCHAR2	->	7	0.059	0	0.1471	44.1393		1
MA ONLINESECURITY	VARCHAR2	->	3	0.087	0	0.1471	51.1035		
PAPERLESSBILLING	VARCHAR2	->	12	0.0243	0	0.0981	59.9804		
PARTNER	VARCHAR2	->	14	0.014	0	0.0981	53.2614		
PAYMENTMETHOD	VARCHAR2	->	8	0.0464	0	0.1962	33.8401		
THE PHONESERVICE	VARCHAR2	-	16	0	0	0.0981	90.0441	A Min importance not reached	
SENIORCITIZEN	NUMBER	->	15	0.0097	0	0.0981	83.8155		
STREAMINGMOVIES	VARCHAR2	->	9	0.0405	0	0.1471	39.7254		
STREAMINGTV	VARCHAR2	->	9	0.0405	0	0.1471	40.3139		
TECHSUPPORT	VARCHAR2	->	4	0.0828	0	0.1471	51.0054		
TENURE	NUMBER	-	2	0.0942	0	3.5311	8.9259		
TOTALCHARGES	NUMBER		11	0.0352	0	96.8612	0.2452	A Exceed % unique	

Figure 6-39. Filter columns with excluded attributes

Data Modeling

To prepare a classification model, drag the Classification node from the Model section of the components panel. Connect it with the Filter Columns node and edit its model settings. Select Target attribute as CHURN, which is the label of past customer churn records. Also, select Case ID as Customer ID as a unique record identifier (see Figure 6-40). We will prepare this model using the four different classification algorithms and then choose the results of the best classifier to predict the customer churn.

Build In	put Text			
Target:	CHURN	•		
Case ID:	CUSTOMERID	-		
Model Se	ttings			+/% 9
Name		Algorithm	Date	Data Usage
CLAS_GU	M_1_14	Generalized Linear Model		8
CLAS_SV	M_1_14	Support Vector Machine		
CLAS_DT	1_14	Decision Tree		
	1_14	Naive Bayes		

Figure 6-40. Classification Build Node settings

If you want to change the algorithm setting of any classifier, select the algorithm and click on the pencil icon as shown in Figure 6-41.

Target:	CHURN	•		
Case ID:	CUSTOMERID	•		• •
Model Se	ttings			💠 🧪 🗶 🔫
Name		Algorithm	Date	Data Usage
CLAS_GL	M_1_14	Generalized Linear Model		
CLAS_SVI	M_1_14	Support Vector Machine		
CLAS_DT	_1_14	Decision Tree		
CLAS_NB	_1_14	Naive Bayes		

Figure 6-41. Edit Model Settings for the Decision Tree algorithm

Select the algorithm tab and change the settings as shown in Figure 6-42. You can tune others in a similar fashion using the model tuning options discussed in earlier sections for every algorithm.

Model Settings					×	ł
Name	Alg	orithm	Date	Data Usage	Columns Excluded by Rules	
LAS_GLM_1_1	4 Gene	ralized Linear Model			0	1
LAS_SVM_1_1	4 Supp	ort Vector Machine			0	
LAS_DT_1_14	Deci	sion Tree			0	
LAS_NB_1_14	Naiv	e Bayes			0	
	Algorithm Settings			anging model algorithm settings, dic	k Help.	
Data Usage The default s Homogenei	settings should work			nanging model algorithm settings, clic	k Help. Gini 🗸]
The default s	ettings should work			nanging model algorithm settings, clic]
The default s Homogenei Maximum D	ettings should work			nanging model algorithm settings, clic	Gini]
The default of Homogenei Maximum D Minimum Re	ettings should work ty Metric: epth:	well for most use cases.		anging model algorithm settings, clic	Gini -	
The default s Homogenei Maximum D Minimum Re Minimum Pe	ty Metric: epth: ecords in a Node:	well for most use cases.		anging model algorithm settings, clic	Gini •	

Figure 6-42. Algorithm Settings for the Decision Tree model

Exit the model settings and run the classification node. Your workflow should look like Figure 6-43 once completed successfully.

CHAPTER 6 CLASSIFICATION METHODS

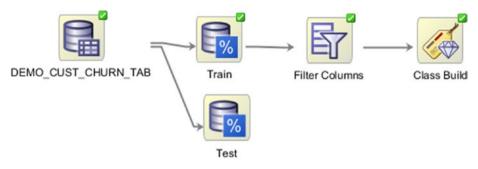


Figure 6-43. Model workflow

Selecting the Best Classifier

You will compare different model accuracy measures and select the results of the best classifier for your task. To accomplish this, right-click on the Class Build node and select Compare Test Results shown in Figure 6-44.

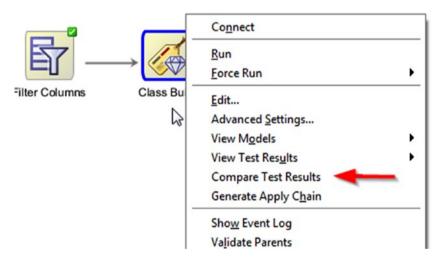


Figure 6-44. Compare Test Results

The Compare Test Results window has five tabs: Performance, Performance Matrix, ROC, Lift, and Profit. All these tabs show the comparison using different metrics of all the algorithms used in the Class Build model.

Performance: This screen shows the comparison of various performance measures for different algorithms used for the model creation (see Table 6-6 and Figure 6-45).

Performance Measures	Description
Predictive Confidence	This measures how good the predictions are compared to the average model
Overall Accuracy (%)	This is the percentage of correct predictions made by the model when compared with the actual target classes of the test data set
Average Accuracy (%)	This is the average per-class accuracy percentage of correct predictions made by the model when compared with the actual target classes of the test data set

 Table 6-6.
 Performance Measures Description

Name	Predictive Confidence %	Overall Accuracy %	Average Accuracy %	Cost	Algorithm
CLAS_DT_1_14	46.9487	75.6789	73.4743	918.7253	Decision Tree
CLAS_GLM_1_14	49.2952	73.1442	74.6476		Generalized Linear Model
CLAS_NB_1_14	44.4037	67.1696	72.2019		Naive Bayes
CLAS_SVM_1_14	48.7924	72.6011	74.3962		Support Vector Machine

Figure 6-45. Performance measures

The performance measures for our case study seem to indicate that the GLM is best among all four algorithms, providing the highest predictive confidence (49.2952), second highest overall accuracy percent (73.1442), and highest average accuracy percent(74.6476).

Performance Matrix: This tab shows the comparison of different algorithms based on the percentage of correct predictions, the percentage of correct predictions for each target class, and the count of correct predictions (Figure 6-46).

Display: Compare Model	. •			
Models	Correct Predictions %	Correct Predictions Count	Total Case Count	Total Cost
CLAS_GLM_1_14	73.1442	1,212	1,657	0
CLAS_SVM_1_14	72.6011	1,203	1,657	0
CLAS_DT_1_14	75.6789	1,254	1,657	918.7253
CLAS_NB_1_14	67, 1696	1,113	1,657	0

Figure 6-46. Performance matrix

Also, one can view the confusion matrix for each classifier by changing the value for Display list to "Show Detail" as shown in Figure 6-47.

Display: S	now Detail	•				
Model: CL	AS_DT_1_14	•				
ALC: NOT COM	ccuracy: 73.4 curacy: 75.6 : 918.	789				
Target Valu	e	Total Case C	Count Correct Predictions	% Cost	Cost %	
No		1,186	78.5835	342.608	100	
Yes		471	68.3652	576.1174	100	
Performar	nce Matrix: Ro	ws=Actual, Columns=	=Predicted: Show totals and	cost:		
	ice Matrix: Ro	ws=Actual, Columns= Yes	Predicted: Show totals and	cost:		
Performan			Predicted: Show totals and	cost:		
Performar No	No	Yes	Predicted: Show totals and	cost:		
Performan No Yes	No 932	Yes 254	Predicted: Show totals and	cost:		
	No 932 149 1,081	Yes 254 322	=Predicted: Show totals and	cost:		

Figure 6-47. Confusion matrix in the Performance Matrix tab

The performance matrix for our case study seems to indicate DT (Decision Tree) as the best among all four algorithms providing the highest percentage of correct predictions. However, when we check the target details, we can see that the true positives (number of cases in which customer churn is Yes) for DT is 68.3652 (see Figure 6-48).

Measure	Correct Predictions		
Target Val	ue CLAS_DT_1_14		
No		78.5835	
res		68.3652	

Figure 6-48. Target Value Details for DT model

Whereas for the GLM, the number of true positives is 78.1316 (see Figure 6-49).

CHAPTER 6 CLASSIFICATION METHODS

Measure	Correct Predictions		
Target Value	CLAS_GLM_1_14		
No		71.1636	
Yes		78.1316	

Figure 6-49. Target Value Details for GLM model

As your objective is to predict customer churn correctly, the GLM model is a suitable candidate.

ROC: The ROC tab has the graphical comparison of the ROC curves of the various algorithms used in the model. It also displays the values for the AUC of the different models.

For our case study, the graphical comparison of ROC curves is a bit cluttered, so we cannot make any finite decision just by observing the graphs (see Figure 6-50).

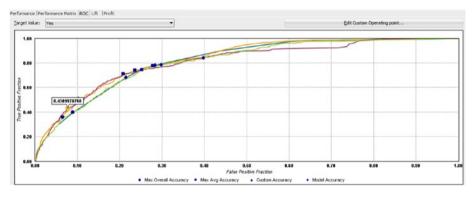


Figure 6-50. ROC curve for all classification models

If we look at the AUC values, the GLM is best among all four algorithms providing the highest AUC (0.8304; see Figure 6-51).

Models		
Model	Area Under Curve	Max Overall Accuracy %
CLAS_DT_1_14	0.8162	76.4635
CLAS_GLM_1_14	0.8304	78.6964
CLAS_NB_1_14	0.8096	78.3343
CLAS_SVM_1_14	0.8088	77.1273

Figure 6-51. Area Under Curve values

Lift: The Lift tab has a graphical comparison of the Lift measures of the various algorithms used in the model along with the values for Lift and Gain measures. For our case study, the Lift curves are very closely tied (see Figure 6-52), so we need to check the numeric values of the Lift.

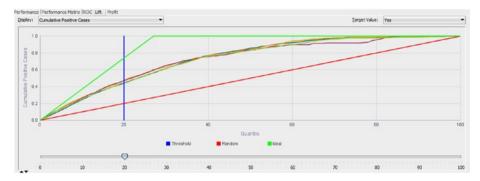


Figure 6-52. Lift chart

We can see the Lift Cumulative value for GLM is 2.3074, which is the highest among all other algorithms (see Figure 6-53).

Models						
Model	Lift Cumulative	Gain Cumulative %	Records Cumulative %	Target Density Cumulative	Algorithm	Creation Date
CLAS_DT_1_14	2.1669	44.463	20.519	0.6159	Decision Tree	7/21/16 2:34 AM
CLAS_GLM_1_14	2.3074	47.3461	20.519	0.6559	Generalized Linear Model	7/21/16 2:34 AM
CLAS_NB_1_14	2.2971	47.1338	20.519	0.6529	Naive Bayes	7/21/16 2:34 AM
CLAS_SVM_1_14	2.1315	43.7367	20.519	0.6059	Support Vector Machine	7/21/16 2:34 AM

Figure 6-53. Lift values

We can conclude that the GLM is performing well for predicting the customer churn for IndTel. We will use the results of the GLM model to predict customer churn for the holdout data set (test data) and store the results in IndTel's customer database.

Drag an Apply node from the Evaluate and Apply section of the component panel for applying the Class Build model to the Test data set. Connect the Apply node to the Class Build node and Test node as shown in Figure 6-54.



Figure 6-54. Workflow with Apply node

Edit the Apply node to see the results and output columns that would be available as a part of the prediction result set. The Predictions tab lists the name of the column that will store the predicted values, lower bound values, and the upper bound values of the GLM. Remove the columns for all the models except GLM. The prediction tab for your model should look like Figure 6-55.

Automatic Settings Case	ID: <none></none>]			
Output Apply Columns			······································	Q+ Column	
Column	Function	Parameter(s)	Model	Node	•
CLAS_GLM_1_14_PRED	Prediction		CLAS_GLM_1_14	Class Build	
CLAS_GLM_1_14_PROB	Prediction Probability	Prediction: <most likely=""></most>	CLAS_GLM_1_14	Class Build	
CLAS_GLM_1_14_PBLW	Prediction Bounds Lower	Confidence (%): 95.0, Prediction: <most likely=""></most>	CLAS_GLM_1_14	Class Build	
CLAS_GLM_1_14_PBUP	Prediction Bounds Upper	Confidence (%): 95.0, Prediction: <most likely=""></most>	CLAS_GLM_1_14	Class Build	

Figure 6-55. Apply Node editor

In the Additional Output tab, select CUSTOMERID to be stored as an attribute along with the predictions in the output table (see Figure 6-56). This will help to tie the predictions to the customer master records of IndTel.

tput Data C Jumn		Ak							atic Q+ Colum
Numn		Ab	as	_	_		Data T	ype	
	Edit Output Data Colu	umn Dialog							
	Available Attributes					Selected Attributes			
	A Name	Data Type				A Name	1	Data Type	
	CHURN	VARCHAR2		*		CUSTOMERID	V	ARCHAR2	
	CONTRACT	VARCHAR2			8	1			
	DEPENDENTS	VARCHAR2			8	8			
	DEVICEPROTECTION	VARCHAR2							
	GENDER	VARCHAR2			8	5			
	INTERNETSERVICE	VARCHAR2		1.000	33	() () () () () () () () () ()			
	MONTHLYCHARGES	NUMBER							
	MULTIPLELINES	VARCHAR2							
	ONLINEBACKUP	VARCHAR2							
	ONLINESECURITY	VARCHAR2		÷.					

Figure 6-56. CUSTOMERID as an additional attribute

Drag the Edit Create Table or View Node from the Data section of the component workflow to store the prediction results in the database. Edit the Create Table or View Node to enter the result table name as DEMO_CUST_CHURN_TEST as shown in Figure 6-57.

Name: DEMO_CUST_CHURN_	TEST			
Type: Ty				
Data				1%
▲ Target Name	Target Type	Key	Index	Alias
CLAS_GLM_1_14_PBLW	BINARY_DOUBLE			
CLAS_GLM_1_14_PBUP	BINARY_DOUBLE			
CLAS_GLM_1_14_PRED	VARCHAR2			
CLAS_GLM_1_14_PROB	BINARY_DOUBLE			
CUSTOMERID	VARCHAR2			

Figure 6-57. Edit Create Table or View Node

Execute the workflow by clicking run (green play button) present at the tool bar of the workflow editor and wait until it completes successfully. Congratulations!! You have successfully prepared a customer churn model to identify the customers who can potentially churn in the future.

The final workflow for the customer churn application should look like Figure 6-58.

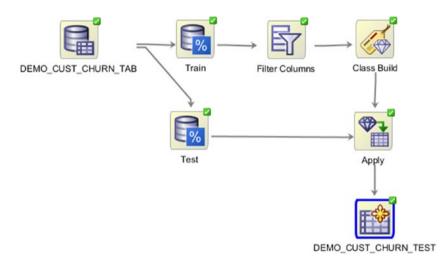


Figure 6-58. Final workflow

Results Interpretation

Query the DEMO_CUST_CHURN_TEST table to see the prediction results (Figure 6-59). The result table has CUSTOMERID as a unique identifier for each prediction, the predicted class (Yes/No) for churn, and the associated probability for each churn. The probability helps to narrow down further the results based on the objective we have in hand. For example, prediction probability can contribute to restricting the organization to design retention campaigns for customers who are having a probability of more than 80% to churn.

rksheet	Query Bu				
	lect CUSTO	MERID, CLAS_GLM_1_1	4_PRED, CLAS_GLM_1_1	_PROB from DEMO_CUS	T_CHURN_TE
Query R	esult X				
	SQL	Fetched 50 rows in 0.01 se			
*		CLAS_GLM_1_14_PRED			
	17-FBQMM	No	0.6841437281118994		
	05-MRGLV	Yes	0.5484924756501286		
3 92	09-NWPGU	No	0.8011967734349948		
4 64	61-PPAXN	No	0.8119092888283229		
5 93	50-ZXYJC	No	0.8091751650668828		
6 65	82-OIVSP	Yes	0.6216253263147113		
7 37	86-WOVKF	No	0.6417132125401045		
8 28	09-ILCYT	No	0.8384060950111442		
9 33	87-VATUS	Yes	0.8795713472160984		
10 46	12-THJBS	Yes	0.5240929870632124		
11 01	37-UDEUO	No	0.7075203618130118		
12 35	83-EKAPL	Yes	0.7649248624025823		
13 83	82-SHQEH	Yes	0.850592608149209		
14 62	84-AHOOQ	Yes	0.754108107144161		
15 23	42-CKIAO	No	0.7014473727248982		
16 83	75-KVTHK	No	0.6342927480915094		
17 30	01-CBHLO	Yes	0.7427592677663695		
	77-RSNTJ	No	0.7695624057396822		
	08-OLGAO	Yes	0.8201522999641767		

Figure 6-59. Customer churn prediction results

Summary

In this chapter, I introduced you to classification methods, which are a form of supervised learning to predict the target with discrete and noncontinuous class labels. We discussed the familiar classification methods—logistics regression, Naive Bayes, decision trees, and SVM—to give you an understanding of how these algorithms work. Oracle Advanced Analytics has a rich library of all these algorithms packaged. All you have to do is pick the best algorithm of your choice and implement it for your data set. Selection of algorithms is based on various criteria, and I touched some of the criteria that are useful to decide which classification algorithm to be used. The customer churn case study was to give you an understanding of how to approach a classification problem and integrate the results into your business operation database with ease. Based on the business requirement, the process can be automated and scheduled at regular intervals to update the findings in the database. This helps the business to stay up-to-date and make timely decisions before any unfortunate event happens.

Chapter 7 is about some of the advanced topics of data mining and the methods available in Oracle Advanced Analytics to implement them in-database.

CHAPTER 7

Advanced Topics

"Data Scientist is the sexiest job of the 21st century," quotes Harvard Business Review. We went through many machine learning algorithms, data science techniques, and use cases, which are necessary to be a data scientist. However, this is just the beginning. Optimization techniques, feature engineering, hyperparameter optimization, and many other subjects are required to become a good data scientist. In the previous chapters, I discussed the building blocks of machine learning, data science, and ways through which we can automate certain data science tasks using Oracle Advanced Analytics. If you have read and practiced the examples and the case studies, you are all set to start your data science journey using Oracle Advanced Analytics. In this chapter, I will quickly touch on some more practical topics that are widely employed in industries and are packaged with Oracle Advanced Analytics for quick implementation of data science and analytics projects.

In this chapter, I discuss the concepts and examples for the following topics:

- Overview of neural networks
- Neural networks using Oracle Advanced Analytics
- Overview of anomaly detection
- Anomaly detection using Oracle Advanced Analytics
- Overview of predictive queries
- Predictive queries using Oracle Advanced Analytics
- Overview of the product recommendation engine
- Product recommendation engine using Oracle Advanced Analytics
- Overview of random forest
- Random forest using Oracle Advanced Analytics

Overview of Neural Networks

The basic idea behind a neural network is to create a computing system that is modeled after the working of our biological brain. A neural network can learn by itself, recognize patterns out of the raw data, and make decisions: all on its own just like human brains. It is widely used in image processing for face recognition modules, in the financial industry to identify transactional frauds, and in manufacturing for automated quality control such as decisions to accept or reject a batch of steel. The applications of neural networks are immense. It forms the brain of robots and is the core component of deep learning techniques. It is estimated that deep learning would solve many mysteries that mankind has and automate huge manual tasks that were not possible ever before. In this section, I will try to touch on some basic concepts of the neural network in an illustrative way and you can write your very first neural network using Oracle Advanced Analytics.

A typical neural network is composed of many individual processing units called neurons and is organized in layers. Based on how we design a neural network, the number of neurons can range from one to a million and even more. The primary task of each neuron is to receive input, process it using some functions, and deliver the output. A neuron does the processing based on the assigned task. For example, an input neuron can only accept raw data and transmit this to other connected neurons. For the ease of classification of the neurons, they are arranged in layers. We group the layers in a neural network into three kinds: input, hidden, and output layers. Each neuron is connected to other neurons in the same layer and/or layers at either side. Figure 7-1 shows an example of a fully formed neural network with one input layer (two neurons), one hidden layer (three neurons), and one output layer (one neuron).

Figure 7-1. A fully formed neural network

Input Layers: These consist of neurons that accept the input values. The output from these neurons is same as the input predictors. As a rule of thumb, the input layer has the same number of neurons as the number of predictors.

Output Layer: This is the final layer of a neural network that returns the result back to the user environment. Based on the design of a neural network, it also signals the previous layers on how they have performed in learning the information and accordingly improved their functions.

Hidden Layer(s): Hidden layers are in between input and output layers. Typically, the number of hidden layers range from one to many. It is the central computation layer that has the functions that map the input to the output of a node.

Function of a Hidden Layer Neuron

A single neuron in a hidden layer takes several inputs and produces an output as shown in Figure 7-2. Typically, they compute a weighted sum of inputs and apply certain functions to it. These functions are called "activation" or "transfer" functions. The transfer function transforms the result of the summation output to a working output using mathematical functions. Mostly, the transfer functions are differential functions to enable continuous error correction and compute the local gradient. There are many such functions such as sigmoid and tanh that can be used as a transfer function. You can find the comprehensive list of the activation functions supported by Oracle Advanced Analytics from the ORE User manual available on the OTN web site. The sigmoid function is one of the most common transfer functions used in the construction of neural networks with binary targets, as it is a strictly increasing function and its derivative is always positive.

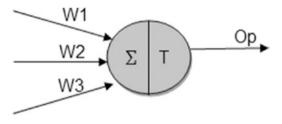


Figure 7-2. A single neuron in the hidden layer

As seen in Figure 7-2, the connections/links between neurons are associated with a weight, which is used in the calculation of the weighted sum of input in a neuron. Weights are real numbers expressing the importance of respective inputs to the output. The higher the weight of a neuron, the more influence it has on another neuron. The weights are used to control a neural network. If the neural network generates the desired output, there is no need to adjust the weights. However, if the network generates an undesirable result, or the variance between the expected and actual is high, then the weights are adjusted to improve the subsequent results.

The neural network shown in Figure 7-1 is a feed-forward neural network. It is a multilayer of neurons connected with each other that takes an input, traverses through the hidden layer, and finally reaches the output layer. There is no feedback mechanism to improve the results.

Figure 7-3 illustrates a feed-forward neural network with backpropagation learning. Backpropagation learning is an abbreviated term for the backward propagation of errors. In the case of back propagation learning, the real value is compared with the output of the neural network, and the efficiency of the weights are checked. The result is propagated back to the previous layers, and the error between the actual and expected are calculated for each node. Based on the learning, the weights are adjusted, and this process repeats until it reaches the input layer, where there is no error.

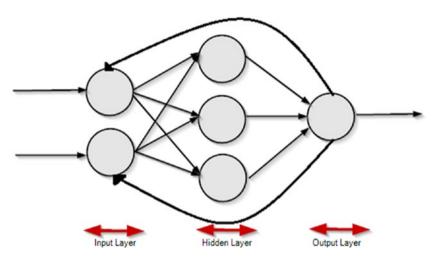


Figure 7-3. Feed-forward neural network with backpropagation learning

The neural network function in the Oracle Advanced Analytics package is a multilayer feed-forward neural network. Currently, neural networks are supported only in Oracle R Enterprise. It supports any number of hidden layers and an arbitrary number of neurons per layer.

Note The ore.neural function does not preprocess the input data. Appropriate data normalization and scaling are strongly recommended.

Parameters for Neural Network

Before I move on to coding a neural network using Oracle Advanced Analytics, you need to understand some of its parameters that are essential to setting it up (see Table 7-1).

Parameter	Description
weight	To assign the initial vector of weights; when NULL, a random starting point is generated.
hiddenSizes	To indicate the number of hidden layers and number of neurons in each hidden layer; for example, hiddenSizes = $c(3, 5)$ specifies a neural network with two hidden layers: the first hidden layer will have 3 neurons, and the second one will have 5.
activations	This argument specifies activation functions for the hidden and the output neural network layers; it supports a single activation function per layer. If the activations argument is NULL, then the activation function for each hidden layer is bipolar sigmoid; and for the output, it is linear.
lowerBound	Lower bound for the range of values to be used by the neural network for weight initialization; it is not required if weights are supplied.
upperBound	Upper bound for the range of values to be used by the neural network for weight initialization; it is not required if weights are supplied.
supplemental.cols	Additional columns to include in the prediction result from the new data set.

Table 7-1. Parameters for Neural Networks

Sometimes it is necessary to stop growing a neural network at some specified conditions to avoid overfitting or unnecessary multiple iterations after the objective is achieved. Table 7-2 lists some of these stopping criteria that can be introduced in a neural network to stop growing them early (and their corresponding parameter setting for the ore.neural function).

Table 7-2. Stopping Criterias

gradTolerance	To stop when errors are below a threshold
maxIterations	To stop when maximum number of iterations has been reached
objMinProgress	When weights and bias hardly changes, and there is a minimal relative change in the objective function value

Note While training a neural network, you may start with a single hidden layer with a small number of hidden neurons. Compute the confusion matrix and then gradually increase the number of layers and neurons until no further error reduction can be observed in the validation data set.

Neural Network Using Oracle Advanced Analytics

Neural Network is only available in the Oracle R Enterprise platform. However, you can call this procedure from either PLSQL or Oracle Data Miner workflow using the ORE and SQL integration mechanism that I discussed in earlier chapters.

STEP 1: Set a seed value and load the ORE library. Setting a seed is necessary when we are using any algorithm that involves random numbers to optimize the results. You can use any seed, but it should be consistent across the task. If you do not fix the seed in creating this neural network, you might see a variation in results due to random weight initialization each time you execute the code.

set.seed(999)
library(ORE)

STEP 2: Use ore.connect to connect to the database.

```
ore.connect(user = "dmuser", sid = "ORCL", host = "localhost", password =
"sibanjan123",port = 1521)
```

STEP 3: Read the credit data training CSV file using the read. csv function. This converts the data into a data frame in R.

```
trainset <- read.csv("C:/Users/Admin/Dropbox/analytics_book/chapter-8/
working/creditset_train.csv")</pre>
```

STEP 4: Use the ore.push function to translate the R object to corresponding ore.frame object; ore.frame maps native R objects to Oracle R specific database objects.

```
trainData <- ore.push(trainset)</pre>
```

STEP 5: Invoke ore.neural with the desired parameters to create a neural network. We first try to build a neural network with one hidden layer and five neurons. As this is a binary classification problem, we use the logistics sigmoid and linear functions as transfer functions for the hidden layer and output layer, respectively.

```
fit <- ore.neural('default10yr ~ LTI + age', data = trainData,hiddenSizes =
c(5L), ,activations = c("sigmoid", "linear"))</pre>
```

STEP 6: Read the credit data test CSV file into the R using the read.csv function.

```
testset <- read.csv("C:/Users/Admin/Dropbox/analytics_book/chapter-8/
working/creditset_test.csv")</pre>
```

STEP 7: Use the ore.push function to translate the R object to a corresponding ore.frame object. Assign clientid as rownames for testData ore.frame. This tags a name to each row in the data set, which makes operations on rows easier.

```
testData <- ore.push(testset)
rownames(testData) <- testData$clientid</pre>
```

STEP 8: Use the ore.predict function to predict the defaults for the test data.

```
ans <- ore.predict(fit, newdata = testData, supplemental.cols =
c("clientid","default10yr"))</pre>
```

STEP 9: Pull out the results from the database using the ore. pull function.

res <- ore.pull(ans)</pre>

STEP 10: View the prediction results of the test data on the R editor using the following code snippet.

```
res$pred_default10yr <- round(res$pred_default10yr)
rownames(res) <- res$clientid
res</pre>
```

Figure 7-4 is a snapshot of the results from the neural network.

CHAPTER 7 ADVANCED TOPICS

> res	1 T	1.1.1
clientid	default10vr	pred_default10yr
307 307	1	1
308 308	0	0
309 309	0	1
310 310	0	0
311 311	0	0
312 312	0	0
313 313	0	1
314 314	0	0
315 315	0	0
316 316	0	0
317 317	0	0
318 318	0	0
319 319	0	0
320 320	0	0
321 321	0	0
322 322	0	0
323 323	0	0
324 324	0	0
325 325	0	0
326 326	1	0
327 327	0	0
328 328	1	0
329 329	0	0
330 330	0	0
331 331 332 332	0	0
333 333	0	0
334 334	0	0
335 335	0	0
336 336	0	0
337 337	0	0
338 338	0	0
339 339	0	0
340 340	0	0
341 341	0	0
342 342	0	0

Figure 7-4. Neural network results

STEP 11: Create the confusion matrix for validating the prediction results (see Figure 7-5). You can see from the confusion matrix that your first neural network has done a pretty good job in identifying the loan defaulters. You can further improve your results by trying out different number of hidden layers, neurons, and activation functions.

confusion.matrix <- with(res, table(default10yr, pred_default10yr))
confusion.matrix</pre>

Figure 7-5. Confusion matrix

Another possible use case for neural networks that I didn't cite in this section is anomaly detection. Anomalies are practicable in every business and occur in one or another form. For example, the anomaly detection can be a financial fraud, a network breach, or a machine failure. Other than neural networks, the Oracle Advanced Analytics platform is equipped with some state of the art algorithms for detecting anomalies from the data. In the next section, I will discuss anomalies and touch on one-class SVM, which is widely used for detecting anomalies.

Overview of Anomaly Detection

I always take a short route from home to the office and back every day. It is not well maintained but serves my purpose to reach the office on time, within 15 minutes. One fine morning, I see some large pits in the road and take a diversion from my regular route. This is an anomaly. I detected it early before driving into the holes and chose a different safe route for my trip. Had I not seen the pits or was negligent enough not to take care with it, I would have faced some serious consequences.

An anomaly is anything that occurs unexpected and is a rare event. It is a deviation from the standard pattern and does not confirm to the normal behavior of the data. Let's say we work in a steel manufacturing industry and we see the quality of the steel suddenly drops down below the permissible limits. This is an anomaly; if not detected and resolved soon, it will cost the organization millions. So to detect an anomaly at an early stage of its occurrence is very crucial.

Anomaly detection systems can be either rule-based or machine-learning-based detection systems. Rule-based systems are usually designed by defining rules that describe an anomaly and assigning thresholds and limits. Anything above the threshold or below it is classified as an anomaly. Rule-based systems are designed from the experience of the industry experts and can be thought of as systems that are designed to detect "known anomalies." They are known anomalies because we recognize what is usual and what is not usual. However, if there is something that is not known and has never been discovered so far, then creating rules for detecting anomalies is difficult. In such cases, machine-learning-based detection systems come in handy. They are a bit complex but can deal with many uncertain situations. Mostly, they can deduce the patterns that are unusual and alert the users. Many times there can be false alarms, but there are ways in machine learning where we can train the machine to reduce the false alarms.

Oracle Advanced Analytics is equipped with a one-class SVM for anomaly detections. We can also use other algorithms such as neural networks and clustering methods for this purpose.

One-Class SVM

One-class SVM is a particular case of SVM for anomaly detections. SVMs are primarily used for binary or multiclass classification data mining, which I discussed in Chapter 6. However, what if the data has only one class and the goal is to ascertain whether the new data is similar to the training data set or not? This is a typical case in anomaly detection, where we know just one class—that is, the current normal behavior—and want to find any deviations from this standard pattern, outliers, or any previously unseen class.

A one-class SVM develops a profile that describes a typical case in the training data. Deviation from the profile is flagged as an anomaly.

The type parameter for ore.odmSVM function has to be set to "anomaly.detection" while creating the SVM model for anomaly detection. The rest of the parameters are the same as those discussed for SVM in Chapter 6.

Anomaly Detection Using Oracle Advanced Analytics

What follows is a demonstration of detecting anomaly using a one-class SVM. I will use the default mtcars data set available in R. The mtcars data set comprises 10 aspects of automobile design, fuel consumption, and performance for 32 automobiles.

STEP 1: Load the ORE library and connect to the Oracle Database.

```
library(ORE)
ore.connect(user = "dmuser", sid = "ORCL", host = "localhost", password =
"sibanjan123",port = 1521)
```

STEP 2: Do the basic transformations for factor variables.

```
mtcar <- mtcars
mtcar$gear <- as.factor(mtcar$gear)
mtcar$carb <- as.factor(mtcar$carb)
mtcar$cyl <- as.factor(mtcar$cyl)
mtcar$vs <- as.factor(mtcar$vs)
mtcar$am <- as.factor(mtcar$am)
mtcar$ID <- 1:nrow(mtcar)</pre>
```

STEP 3: Push the mtcar data set to the Oracle database.

MTCARS <- ore.push(mtcar)

STEP 4: Create the one-class SVM model for anomaly detection by invoking ore.odmSVM with "anomaly.detection" as a mandatory parameter. The kernel function is chosen to be linear, as the data is linearly separable. If the data is not linearly separable, use nonlinear kernels such as Gaussian.

```
svm.model <- ore.odmSVM( ~ .-ID, MTCARS,"anomaly.detection",kernel.
function="linear")</pre>
```

STEP 5: Use ore.predict to classify typical and anomalous data points. The prediction column marks anomalous records with zero (0) and typical/normal records with one (1).

```
svm.result <- ore.predict (svm.model, MTCARS, "ID")</pre>
```

STEP 6: Validate the number of anomalous and typical records in the data set. We can see three records marked as anomalous (see Figure 7-6).

```
table(svm.result$PREDICTION)
```

> table(svm.result\$PREDICTION)

0 1 3 29

Figure 7-6. Summary of the anomaly prediction

STEP 7: Pull out the results from the Oracle database.

```
mtcar_pred <- ore.pull(svm.result)</pre>
```

STEP 8: Merge the training and prediction data set to have a holistic view of the anomalous records (see Figure 7-7).

results <- merge(mtcar,mtcar_pred,by="ID")</pre>

results

>	resi	ults													
	ID	mpg		disp							gear	carb	'1'	.0.	PREDICTION
1		21.0		160.0							4	4	0.5056674	0.4943326	1
2		21.0		160.0							4		0.5152863		
3	3	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	0.5102964	0.4897036	1
4	4	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	0.5234046	0.4765954	1
5		18.7		360.0						-	3		0.5344725		1
6	6	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	0.5000297	0.4999703	1
7		14.3		360.0					0	0		4	0.5057617	0.4942383	1
8	8	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	0.5003826	0.4996174	1
9	9	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	0.5125569	0.4874431	1
		19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	0.5012371	0.4987629	1
11	11	17.8		167.6							4	4	0.4999888	0.5000112	0
12	12	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3		0.5029513		1
13	13	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	0.5045981	0.4954019	1
14	14	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	0.5000226	0.4999774	1
15	15	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	0.5000612	0.4999388	1
16	16	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4	0.5034760	0.4965240	1
17	17	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4	0.5291758	0.4708242	1
18	18	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1	0.5124063	0.4875937	1
19	19	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2	0.4955863	0.5044137	0
20	20	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1	0.5057599	0.4942401	1
21	21	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1	0.5044280	0.4955720	1
22	22	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2	0.5000473	0.4999527	1
23	23	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2	0.5183815	0.4816185	1
24	24	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4	0.5158205	0.4841795	1
25	25	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2	0.5374437	0.4625563	1
26	26	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1	0.5000008	0.4999992	1
27	27	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2	0.5180578	0.4819422	1
28	28	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2	0.5000287	0.4999713	1
29	29	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4	0.5353505	0.4646495	1
30	30	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6	0.4964244	0.5035756	0
31	31	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8	0.5000297	0.4999703	1
32	32	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2	0.5304042	0.4695958	1

Figure 7-7. Results displaying the anomalous automobiles

The results clearly show the automobiles that were marked anomalous. We can also use the anomaly detection query option available in the Predictive Queries section of the Oracle SQL Developer GUI. We need not know the machine learning techniques to build an anomaly detection model using this option. This method is one of the useful features that the Oracle Advanced Analytics platform offers and that I discuss in the next section.

Overview of Predictive Analytics in Oracle Advanced Analytics

Predictive queries and packages are used to create on the fly predictive models for data in the Oracle Database. For using the predictive analytics packages and functionalities, you need not learn the intricacies and mathematical complexity of machine learning algorithms. Instead, you can directly supply your data sets to the predictive analytics engine and view the results. The predictive analytics engine understands the data, trains the models, tests it, and then generates the results. However, these models are not preserved after the operation is complete and the result is returned to the user. There are many aspects of data science that predictive analytics doesn't address, such as optimization and regularization of algorithms, but we can say it is just the beginning of the revolution for automated data science. A user or an organization who has no knowledge of data science can use these APIs for implementing predictive analytics solutions. If you are a data scientist or a machine learning expert, you can use the predictive analytics packages and queries to quickly build a machine learning model. It can come in handy when you want to do a quick proof of the concept for winning the confidence of stakeholders before the actual start of a project.

In the following sections, I will demonstrate the predictive analytics package and the related functions that Oracle Advanced Analytics offers.

Predictive Analytics Using SQL Developer GUI

The Predictive Queries choice is available in the component panel of the data miner option of SQL Developer. Table 7-3 displays the four functionalities that can be performed on the input data sets for predictive analytics.

Table 7-3. Predictive Query Techniques

Predictive Query Technique	Description
Prediction Query	Creates regression/classification models based on the type of target attribute and input data set. If the target is a numeric value, it performs regression; and if it is of character data type, it performs classification.
Anomaly Detection Query	Builds an anomaly detection model on an input data set and returns the results indicating the anomalous records.
Feature Extraction Query	Automatically identifies and extracts key features from the input data set.
Clustering Query	Forms clusters for the input data set automatically and returns the data with an assigned cluster for each record.

I will use the customer churn data set used in Chapter 6 to demonstrate the prediction query functionality of the predictive queries. You can try out other predictive queries options similarly.

STEP 1: Define the DEMO_CUST_CHURN_TAB data source by dragging the data source node from the data section of the components panel and selecting the table DEMO_CUST_ CHURN_TAB. Then drag Prediction Query node from the Predictive Queries panel to the workflow editor and connect it to the DEMO_CUST_CHURN_TAB data source as shown in Figure 7-8.

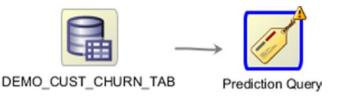


Figure 7-8. Data source node connected to Prediction Query

STEP 2: Right-click on the Prediction Query Node and select the edit option. As shown in Figure 7-9, select the Case ID as CUSTOMERID and add CHURN as the target attribute.

	•						
Targets							+ >
Mame	0	Data type			Mining Type		
Add Target					-		×
Available Attributes				Selected Attrib	utes		
Name	Data Type			Name		Data Type	
CONTRACT	VARCHAR2	1	_	ME CHURN		VARCHAR2	
DEPENDENTS	VARCHAR2		>				
DEVICEPROTECTION	VARCHAR2		88				
GENDER	VARCHAR2						
INTERNETSERVICE	VARCHAR2		8	5			
MONTHLYCHARGES	NUMBER	-	33				
MULTIPLELINES	VARCHAR2			2			
ONLINEBACKUP	VARCHAR2						
M ONLINESECURITY	VARCHAR2						
PAPERLESSBILLING	VARCHAR2	~					

Figure 7-9. Edit options in prediction query

Select OK to exit the Add Target screen. The Edit Prediction Query node should look like Figure 7-10. You can see the prediction output section in the screen automatically populated with Prediction, Prediction Details, and Prediction Probability. These three attributes would provide you with the prediction results, the rule used for prediction, and the probability associated with the prediction, respectively.

put Additional Ou	Itput				
•					
					* ×
	Data type		Mining Type		
	VARCHAR2			22	
					Reset 💠 💥 🖉
_ Target		Column	P	arameter	
. Target					
CHURN		PRED_CHURN_1			
CHURN		PDET_CHURN_1		rt: Absolute	
CHURN				rt: Absolute, ediction: <m< th=""><th></th></m<>	
		Data type	Data type	Data type Mining Type	Data type Mining Type

Figure 7-10. Final Edit Prediction Query Node

Connect a Create Table or View node to the Prediction Query node and assign a table name DEMO_CUST_CHURN_PRED to store the results. You can follow the steps outlined in previous chapters for this task. Execute the workflow. The final workflow looks like Figure 7-11.

Figure 7-11. Final Prediction Query workflow

Once completed, you can view the prediction results from the DEMO_CUST_ CHURN_PRED table (Figure 7-12).

	select	* from DEMO_(CUST_CHURN_PREI)	
Scrip	t Output >	Query Res	ult ×		
			i0 rows in 0.223 seco	nds	
	CHURN	CUSTOMERID	PRED_CHURN_1	PDET_CHURN_1	PROB_CHURN_1
1	No	0002-ORFBO	No	(XMLTYPE)	0.9424486416894865
2	No	0003-MKNFE	Yes	(XMLTYPE)	0.5751634607081375
3	Yes	0011-IGKFF	Yes	(XMLTYPE)	0.8177224045327425
4	Yes	0013-EXCHZ	Yes	(XMLTYPE)	0.923560552953337
5	No	0013-MHZWF	Yes	(XMLTYPE)	0.6419147179618768
6	No	0013-SMEOE	No	(XMLTYPE)	0.9499142323114071
7	No	0014-BMAQU	No	(XMLTYPE)	0.9412672824946857
8	No	0015-UOCOJ	Yes	(XMLTYPE)	0.7622547426757585
9	No	0016-QLJIS	No	(XMLTYPE)	0.9886456497702332

Figure 7-12. Results

You can also create an on the fly predictive analytics model using SQL and PLSQL API. These are useful when you want to integrate the models with any data visualization tools or any front-end applications. Almost all front-end software and data visualization tools have PLSQL support, and this makes it easy to leverage the value of on the fly, indatabase predictive models provided by the Oracle Advanced Analytics platform. The DBMS_PREDICTIVE_ANALYTICS package provides the methods necessary to perform these operations.

DBMS_PREDICTIVE_ANALYTICS

There are three main operations that can be performed using the DBMS_PREDICTIVE_ ANALYTICS predictive analytics package: EXPLAIN, PROFILE, and PREDICT.

EXPLAIN

The EXPLAIN function is used to explain attributes that are important for a model. It returns the ranks and importance of the attributes in relative order of their importance in predicting the target attribute. Behind the scenes, it implements the attribute importance functionality that I discussed in Chapter 6.

CHAPTER 7 ADVANCED TOPICS

```
BEGIN
DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
DATA_TABLE_NAME => 'DEMO_CUST_CHURN_TAB',
DATA_SCHEMA_NAME => 'DMUSER',
EXPLAIN_COLUMN_NAME => 'CHURN',
RESULT_TABLE_NAME => 'DEMO_CUST_CHURN_EXP_PRED');
```

END; /

When we query the result table DEMO_CUST_CHURN_EXP_PRED, we can view the predictors along with their importance score (EXPLANATORY_VALUE) and rank arranged in decreasing order of the predictive power they possess for predicting CHURN (see Figure 7-13).

Jer		output × Query Resu ws Fetched: 20 in 0.019 se		
	ATTRIBUTE_NAME	ATTRIBUTE_SUBNAME	EXPLANATORY_VALUE	RANK
1	CONTRACT	(null)	0.1699854465209734212082281310056546018268	
2	TENURE	(null)	0.1210357717968724376100402874865315790674	1
3	ONLINESECURITY	(null)	0.1080602174387438319921316664638731459957	
4	TECHSUPPORT	(null)	0.1028259189028794984384929047867875278449	
5	INTERNETSERVICE	(null)	0.0903571469009322207381697475252614173612	
6	ONLINEBACKUP	(null)	0.0751740041072292130256331697448270903798	
7	DEVICEPROTECTION	(null)	0.0724675861972645525196466278777352030908	
8	PAYMENTMETHOD	(null)	0.0714936157659249857236118687322747229782	
9	MONTHLYCHARGES	(null)	0.0675985163894383016047886127710468523882	
10	TOTALCHARGES	(null)	0.0612017348905357222166594996812455086659	1
11	STREAMINGTV	(null)	0.0511586661160745032571110209610322281339	1
12	STREAMINGMOVIES	(null)	0.0511586661160745032571110209610322281339	1
13	PAPERLESSBILLING	(null)	0.0308737304840559274699474810114337017773	1
14	DEPENDENTS	(null)	0.0226269586804300262630366910073151656504	1
15	PARTNER	(null)	0.0180450959724408895650692761071218542048	1
16	SENIORCITIZEN	(null)	0.0158088709323816813032471564183857462625	1
17	MULTIPLELINES	(null)	0	1

Figure 7-13. Explain method results

PREDICT

The PREDICT method produces predictions for unknown targets. Based on the values of the target attribute, it decides whether to opt for a regression algorithm or classification algorithms. If the target is a numeric attribute, it creates a regression model; and if it is a categorical attribute, it creates a classification model. The input data to the PREDICT method

should contain records for both the training as well as new data sets. For the new data set, the target attribute should be NULL or set to NULL. Any case in which the target is unknown, that is, when the target value is null, will not be considered during model training.

```
DECLARE
v_accuracy NUMBER(30,10);
BEGIN
DBMS_PREDICTIVE_ANALYTICS.PREDICT(
ACCURACY => v_accuracy,
DATA_TABLE_NAME => 'DEMO_CUST_CHURN_TAB',
DATA_SCHEMA_NAME => 'DMUSER',
CASE_ID_COLUMN_NAME => 'CUSTOMERID',
TARGET_COLUMN_NAME => 'CHURN',
RESULT_TABLE_NAME => 'DEMO_CUST_CHURN_ANALYTICS_PRED');
dbms_output.put_line('*** Accuracy ***');
dbms_output.put_line(' Accuracy '||v_accuracy);
END;
/
```

After we execute the code, we can see the accuracy measure, which in the AUC metrics is 0.4993768397. This is an average score, but there is no way to improve this accuracy using this API (see Figure 7-14). It is a demerit of the predictive analytics package, but it is there for automated machine learning.

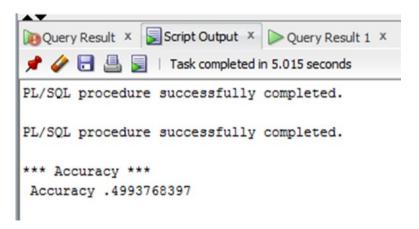


Figure 7-14. Accuracy of the PREDICT method classifier

When you query the result table DEMO_CUST_CHURN_ANALYTICS_PRED, you can find the predictions for each CUSTOMERID along with their prediction probability (see Figure 7-15).

	y Result A	Script Output X	Query Result 1 ×
	🚱 🎭 SQL	Fetched 50 row	s in 0.036 seconds
		PREDICTION	PROBABILITY
1	7590-VHVEG	Yes	0.673318381845185
2	5575-GNVDE	No	0.9313101027767873
3	3668-QPYBK	No	0.7530729700893037
4	7795-CFOCW	No	0.9052174975774587
5	9237-HQITU	Yes	0.8185738123503288
6	9305-CDSKC	Yes	0.862184850784966
7	1452-KIOVK	Yes	0.6077238059255187
8	6713-OKOMC	No	0.6992615801897817
9	7892-POOKP	Yes	0.5750501376477327
10	6388-TABGU	No	0.9530216364218761
11	9763-GRSKD	No	0.6766871465068725
12	7469-LKBCI	No	0.9083502612702742
13	8091-TTVAX	No	0.957777685344175
14	0280-XJGEX	Yes	0.4374616631407123
15	5129-JLPIS	Yes	0.5491694199512661
16	3655-SNOYZ	No	0.9521897449939314

Figure 7-15. PREDICT method results

PROFILE

The PROFILE method is to create profiles or rules that provide insights on the reason for a particular prediction. Using PROFILE, we can see the patterns that define the outcome. For example, we can create customer profiles based on their churn status (yes/no). Using the PROFILE method can help us retrieve rules that define the attributes and behavior of customers who have churned or have stayed with us. Behind the scenes, it executes the decision tree algorithm to accomplish this task.

```
BEGIN
   dbms_predictive_analytics.profile(
   DATA_TABLE_NAME => 'DEMO_CUST_CHURN_TAB',
   data_schema_name => 'DMUSER',
   target_column_name => 'CHURN',
   result_table_name => 'DEMO_CUST_CHURN_PROF_PRED');
```

END;

When we query the results table DEMO_CUST_CHURN_PROF_PRED, we can view the various rules that describe each score (or prediction). The result/description is of XML type. Click on the pencil icon next to the Description column in Query Results to view the XML (see Figure 7-16).

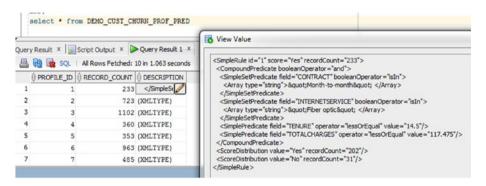


Figure 7-16. PROFILE method results

Overview of Product Recommendation Engine

A product recommendation system provides suggestions for products to a user. The recommendations relate to various decision-making processes such as what items to buy or what service to avail. A recommendation system provides useful and practical suggestions for the particular type of product that is of benefit to a user.

The goal of this system is to provide right and relevant product recommendations for customers so that the probability of sales conversion is high.

Product recommendation systems are widely used in e-commerce applications. However, they can also be leveraged for physical stores. There are various types of recommendation systems. Following are two widely used recommendation system designs in the e-commerce space:

1. *Content based*: Examine properties of the items to recommend items that are similar in content to items the user has already liked in the past or matched to the attributes of the user.

- 2. *Collaborative filtering (CF)*: A user is recommended items based on the past rating of all users collectively. CF can be of two types:
 - a. **User-based CF**: Given a user U, find the set of other users D whose ratings are similar to the ratings of the selected user U.
 - b. *Item-based CF*: Build an item-item matrix determining relationships between pairs of items.

The design of a recommender system is not limited to these types. We can also use association rules and the Naïve Bayes algorithm. We can also prepare a hybrid recommendation using multiple techniques to further narrow down and improve the quality of recommendations.

Generally, in physical stores, it's hard to prepare recommendation systems using content-based or CF techniques directly. The reason is the absence of data such as ratings, the likeness of users. However, you can prepare the data to morph it to a suitable format. For example, you can assume if users buy a similar kind of product most of the time, then they have an inclination toward the product. Data transformations, assumptions, and morphing are the most important job of a data scientist. Real-world data is not always in the format we need. It is the role of a data scientist to pull useful information from the raw data.

Product Recommendation Engine Using Oracle Advanced Analytics

The Oracle Advanced Analytics platform has not yet shipped the recommendation algorithms such as content-based or CF algorithms. However, market basket analysis and the Naïve Bayes algorithm can also be used to design a recommendation system.

I continue with the case study discussed in Chapter 4 for market basket analysis. We can use the same data set DEMO_ASSOC_PUR_V that was prepared for that exercise.

STEP 1: Define the DEMO_ASSOC_PUR_V data source by dragging the data source node from the data section of the components panel and selecting the table DEMO_ASSOC_PUR_V. Then, drag the Filter Rows node from the transforms section to the workflow editor and connect it to the DEMO_ASSOC_PUR_V data source (see Figure 7-17).

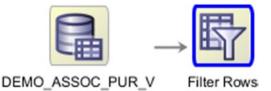


Figure 7-17. Data source node connected to Filter Rows node

STEP 2: Right-click on the node to edit its properties and add the filter condition as customer_id = 210342. Here, we are hard-coding the customer id to generate a recommendation for this particular customer. However, we can make it parameterized using scripts to input the customer id at the run time. This is left as an exercise for the readers to try using the techniques we discussed in Chapter 4.

STEP 3: Drag the Class Build node from the Models panel to the workflow editor. Connect it to the Filter Rows and edit its properties. Select ITEM as the target attribute, as we want to predict which item is suitable for the customer to recommend. In the Model Settings section, remove all algorithms except Naïve Bayes (see Figure 7-18).

Build In	put Text			
Target:	ITEM	•		
Case ID:	<none></none>	•	A Processing will be slower if Case ID is no	t provided.
Model Se	ttings			
Model Se Name	ttings	Algorithm	Date	Data Usage

Figure 7-18. Edit Classification Build Node options

STEP 4: Execute the workflow as described in previous chapters. The final workflow should look like the Figure 7-19.

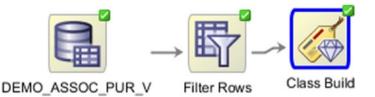


Figure 7-19. Final product recommendation workflow

STEP 5: View the model by selecting the model name from the drop-down menu of the Class Build node as shown in Figure 7-20.

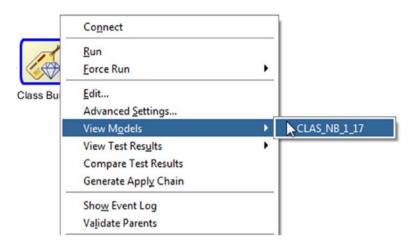


Figure 7-20. View model options

The view models page shows the probability of the customer purchasing Tuna is 100%, while the probability of other items the customer buys is 50% (see Figure 7-21). So, it is beneficial to recommend Tuna to that customer.

	Q- Attribute
Probability(%) for Tuna	
	2.63157895
	100.0000000
	100.0000000
	100.0000000
	Q.+ (Attribute
Probability(%) for Spinach	
Probability(%) for Spinach	

50.00000000

Figure 7-21. Purchase probabilities of Tuna and Spinach

Overview of Random Forest

Random forest is an ensemble learning method for decision trees. Ensemble models are composed of several supervised learning models that are independently trained, and the results are combined in different ways to obtain the final prediction result. The result has better predictive performance than the results of any of its constituent learning algorithms separately. Mostly there are two types of ensemble learning methods that are widely used:

- 1. **Bagging**: Also known as bootstrap aggregation, it is the way to decrease the variance error of a model's result. In this method, random samples are prepared from training data set using the bootstrapping method (random sample with replacement models). Models are built on each sample using supervised learning methods. Finally, the results are combined by averaging the results or selecting the best prediction using majority voting. Majority voting is a process in which the class with the largest number of predictions in all of the classifiers becomes the prediction of the ensemble.
- 2. **Boosting**: The boosting method is an iterative process in which successive models are created one after the other based on the errors of the predecessors. This helps to reduce both variance and bias in the data set. Boosting attempts to create new classifiers that are better able to predict, for which the current ensemble's performance is weak. Unlike bagging, the resampling of the training data is dependent on the performance of the earlier classifiers. Boosting uses all data to train each classifiers are given more weight so that subsequent classifiers improve the results.

Random forest is based on the bagging method of ensemble models. Here, multiple decision trees are created with the different set of predictors. Each tree gives its prediction results. The random forest uses the voting mechanism to select the most voted prediction class as the final prediction. This produces better prediction results than a single decision tree and is more stable.

Random Forest Using Oracle Advanced Analytics

In the following example, I will illustrate how to use random forest to classify data.

STEP 1: Set a seed value and load the ORE library.

```
library(ORE)
ore.connect(user = "dmuser", sid = "ORCL", host = "localhost", password =
"sibanjan123",port = 1521)
```

STEP 2: Read the credit data training CSV file using the read. csv function.

```
trainset <- read.csv("D:/studies/neuralnet/creditset_train.csv")
testset <- read.csv("D:/studies/neuralnet/creditset_test.csv")</pre>
```

STEP 3: Use the ore.push function to translate the R object to a corresponding ore.frame object.

```
CHAPTER 7 ADVANCED TOPICS
```

```
trainData <- ore.push(trainset)
testData <- ore.push(testset)</pre>
```

STEP 4: Use ore.randomForest to create a random forest model with the parameters discussed in the previous section.

```
mod <- ore.randomForest('default10yr ~ LTI + age', data = trainData,na.
action = na.exclude)
```

STEP 5: Use ore.predict to predict the values for test data.

```
ans <- ore.predict(mod, testData, type="all", supplemental.cols=c("clientid
","default10yr"))</pre>
```

STEP 6: Validate the model by creating a confusion matrix (see Figure 7-22).

Figure 7-22. Confusion matrix

confusion.matrix <- with(ans, table(default10yr, prediction))</pre>

confusion.matrix

The confusion matrix shows a precision of 83.33% in predicting loan defaulters (values with class label as one). Though this shows a very optimistic picture of our model in predicting defaulters, this might also be a case of overfitting.

Summary

In this chapter, I discussed neural networks, which are gaining a lot of attention and importance in the data science community due their ability to solve complex, nonlinear problems that are difficult to be performed by general machine learning algorithms. We also came across anomaly detection theory, and the corresponding Oracle Advanced Analytics packages that can be leveraged for detecting anomalies in the data. Using the customized and state-of-the-art anomaly detection packages in Oracle Advanced Analytics runs in the database and detects anomalies as and when any abnormality occurs. We also learned about ensemble methods and implemented random forest, which is widely used across the data science community for producing superior results. Until now, I have discussed the different ways we can implement and automate the data science tasks using Oracle Advanced Analytics. In Chapter 8, I discuss the different deployment and migration techniques for moving the models and workflows across environments.

CHAPTER 8

Solutions Deployment

We are often required to move the models and their associated objects to different environments in their lifetime. For example, we develop a model in a development environment, move to its test environment for user testing, and make it live in a production environment. It is not feasible to create the models from scratch in every environment, and doing so might introduce human errors at certain instances.

In this chapter, I cover the following topics:

- Techniques to export and import an Oracle Data Miner (ODM) workflow
- Explore the deploy option in SQL Developer for implementing ODM workflows
- Import and export data mining models
- Using PMML (Predictive Model Markup Language) to export and import predictive models to the Oracle Advanced Analytics platform

Export and Import an ODM Workflow

You can use the export and import workflow option in SQL Developer to export the data mining workflow and recreate it in a different environment with ease. You can also utilize this functionality to store a backup copy of your workflow as and when you do some significant enhancements on it. The development environment is a place where a lot of people do many experiments, which makes it vulnerable to database misconfiguration and prone to errors. Having a backup of the workflow at regular intervals would certainly help you preserve all the hard work and efforts you put in to developing the workflow. The export workflow option generates an XML file that can be stored and can be imported using SQL Developer.

To export a workflow, you can follow these steps:

• Right-click on the name of the workflow in the Data Miner tab. It pops up a menu having "Export Workflow" as an option as shown in Figure 8-1.

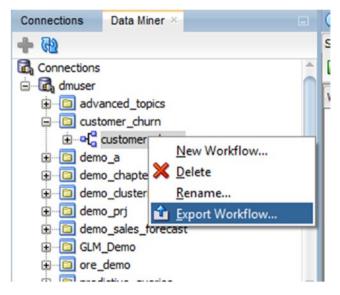


Figure 8-1. Export Workflow option

• Select the Export Workflow option. Enter the location and file name where you want the workflow to be saved. By default, the name of the file is the workflow name. In case you want it to be stored by some other name, you can change the file name (Figure 8-2).

Save	8 * / 9 ^		23
Location: 🛅	-: \analytics_book \chapter-9 \codes	- 🗘 🗘 😭	E
sant_enter	emo_sf_workflow		
	ame: customer_churn.xml		
Help		Save	Cancel

Figure 8-2. File location window to save the wokflow

• Once the workflow is migrated successfully, you can find the XML file stored in the mentioned location (see Figure 8-3).

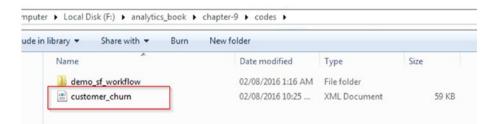


Figure 8-3. Exported XML of the workflow

CHAPTER 8 SOLUTIONS DEPLOYMENT

To import this workflow to another environment or back to the same environment, you can follow the these steps:

• Create a new project using the process I discussed in Chapter 2. Right-click on the project and select Import Workflow from the list. This opens up a dialog to locate the file (see Figure 8-4).

product_rec SANT Enterp test		
	 <u>N</u>ew Workflow <u>New Project</u> <u>D</u>elete <u>P</u>roperties 	
All Schemas	<u>R</u> ename <u>Import Workflow</u>	1

Figure 8-4. Import Workflow option

• Choose the file location, the file name to be imported, and select Open as shown in Figure 8-5.

	\analytics_book\chapter-9\codes	- 🗘 🗘 🔁	E
👝 🚊 🛅 der	mo_sf_workflow		
🔜 🚺 🐼 cus			
odes			
enter			
dmin			
<u> </u>			
pter-9			
_			
ics_b	na custamar dura uml		
	ne: customer_churn.xml		

Figure 8-5. XML workflow file choice options

• The next screen confirms the details related to the workflow name, models, and output tables. These details have defaulted from the workflow XML file. Proceed with the default names or rename the workflow as per choice and click OK to continue (see Figure 8-6).

nter a unique name	for the import workflow.	Ca
Workflow Name:	customer_churn	
Object Name Man	agement Options	
<u>R</u> ename Mod	del and Output Table names if necessary	
Keep Existin	g Model and Output table names even if conflict exists	

Figure 8-6. Import Workflow window

Once completed successfully, the workflow appears on the projects list as shown in Figure 8-7.

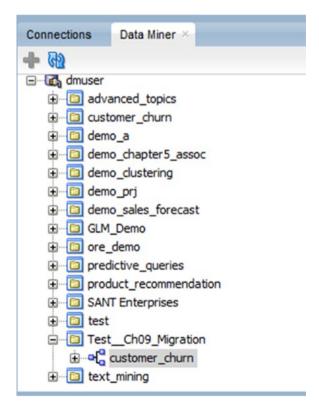


Figure 8-7. Imported customer churn workflow

Deploy Option for Data Miner Workflows in SQL Developer

The deploy option in the SQL Developer can be used to deploy the model in a production environment. We always like to automate the tasks in a production environment whenever possible. For example, we might want to schedule the models to run during the night or on off-business hours. The deploy options help to create PLSQL scripts that have all the functionalities that you have developed using the GUI option of the Oracle Advanced Analytics platform. The master script can be executed by a user or scheduled to run at intervals.

Note The script scheduler should have the feature to execute SQL scripts or use DBMS_SCHEDULER PL/SQL API for scheduling.

To create these migration scripts, open the workflow in the SQL developer. Rightclick on a node and select Deploy as shown in Figure 8-8. The deploy option shows three choices to choose. Table 8-1 lists a brief description of the options:

Deploy Options	Description
Selected node and dependent nodes	Migration scripts are created for the node that is selected for deployment along with its dependent node definitions.
Selected node, dependent nodes, and children nodes	Migration scripts are created for the selected node, nodes that are dependent on it, and also its children nodes.
Selected node and connected nodes	Migration scripts are created for the selected nodes and all the nodes that are connected to it.

 Table 8-1.
 Deploy Options

We always try out different options in the workflow in our development phase. It is always advisable to clean up the workflow or create a new one with the final design before preparing the migration scripts. Selected node, dependent nodes, and children nodes are the most suitable options that I use almost every time. It migrates all the nodes that a workflow has. Also, I always edit the last node to deploy, so that we don't miss any developed functionality while migrating the codes.

CHAPTER 8 SOLUTIONS DEPLOYMENT

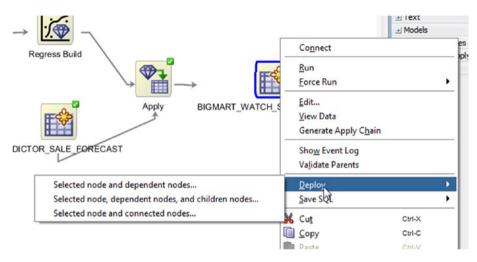


Figure 8-8. Deploy options selection menu

Once you select the "Selected node, dependent nodes, and children nodes" option, the Generate SQL Script screen pops up.

STEP 1: Choose the target database option.

The default database version in which the workflow is created is shown on the screen. It is always advisable to have the workflow development and target database version similar to minimize the chance of compatibility issues. Oracle keeps enhancing the functionalities at almost each version release, which might introduce some potential release issues. Click Next to continue to Step 2 of the SQL script generation (see Figure 8-9).

rget Database					
Target Database	Target Database Version:	12.1.0.2.0	-	1	
Script Directory				<i>.</i>	
			- T		

Figure 8-9. Step to select Target Database Version

STEP 2: In this screen, you need to enter the Script Directory and Base Directory (see Figure 8-10). The Script directory is the name of the folder where all the generated scripts will be stored. The Base directory is the path to the Script Directory.

CHAPTER 8 SOLUTIONS DEPLOYMENT

cript Directory			
Target Database	Script Directory:	demo_sf_workflow	
Script Directory	Base Directory:	ase Directory: F:\analytics_book\chapter-9\codes	
	Directory Path:	F:\analytics_book\chapter-9\codes\demo_sf_workflow	

Figure 8-10. Step to select Script Directory

Click Finish to generate the scripts. If the scripts are created successfully, the successful message in Figure 8-11 appears on the screen.

Deploy Code	×
Script generation completed successfully.	
	ОК

Figure 8-11. Successful Deploy Code message

Navigate to the script directory to check the generated scripts. You can see many scripts are created for the single workflow. The following is a brief list of the types of scripts that get created (see also Figure 8-12).

- <workflow>.png: It has the image of the workflow.
- <*node>.SQL*: An SQL script gets generated for each node of the workflow.
- <*workflow_run>.sql*: It is the master script that is used to recreate and run the workflow. This is the script you need to execute in the target instance. This script has calls to other scripts in necessary order.
- <workflow_drop>.sql: This is the cleanup script to drop the objects related to the workflow.

ary Share with Burn	New folder		
lame	Date modified	Туре	Size
apply	02/08/2016 1:16 AM	SQL File	4 KB
bigmart_sale_orders	02/08/2016 1:16 AM	SQL File	3 KB
bigmart_watch_sale_forecast	02/08/2016 1:16 AM	SQL File	4 KB
demo_sf_workflow	02/08/2016 1:16 AM	PNG Image	33 KB
demo_sf_workflow_drop	02/08/2016 1:16 AM	SQL File	4 KB
demo_sf_workflow_run	02/08/2016 1:16 AM	SQL File	6 KB
] filter_columns	02/08/2016 1:16 AM	SQL File	6 KB
predictor_sale_forecast	02/08/2016 1:16 AM	SQL File	4 KB
regress_build	02/08/2016 1:16 AM	SQL File	12 KB
sql_query	02/08/2016 1:16 AM	SQL File	4 KB

Figure 8-12. Generated deployment scripts for demo_sf_Workflow

Note The PLSQL packages, R scripts, and shared database objects have to be migrated and compiled in the target environment prior executing the workflow scripts.

Import and Export Data Mining Models

In the preceding sections, we learned about exporting and importing the data mining workflow. What if the models are created using PLSQL and ORE ODM APIs? The export and import functionality for data mining models helps us in migrating the models between the environments with ease. It can also be used to deploy the models in another environment along with all the model and algorithm settings that we used in the development environment.

The export_model option of the DBMS_DATA_MINING package creates a dump (.dmp) file that can be used to recreate the models.

EXPORT_MODEL

The export_model procedure of the DBMS_DATA_MINING package has some parameters described in Table 8-2 to be entered for exporting the model(s).

Parameters	Description
filename	File name for the dump file.
Directory	Directory name of the location to create the dump file.
model_filter	Enter the model name as filter criteria; if you don't specify this parameter, all models in the schema are exported.
Filesize	An optional parameter; the default size is 50 MB. You can use this parameter to specify the maximum size of a file operation.
remote_link	An optional parameter to specify the remote database link.
jobname	An optional parameter that specifies the name of the export job.

The files created by Export option are physical files (files stored in the operating system). So, the DBA (Database Administrator) needs to give the DM (data mining) user access to create directories, or he/she should give read/write permission to the DM user for dumping the files into the file directory of interest as described in the following steps.

STEP 1: (DBA task) The data mining user should have the permission to create any directory. The DBA can grant permission to DMUSER to create the directory using the following command:

grant create any directory to dmuser;

STEP 2: From the data mining user (DMUSER), create the directories. You need to make sure the physical directory exists.

CREATE OR REPLACE DIRECTORY dmdir AS 'F:\sample mig\oracle'

You can export a single model or multiple models by entering the model names as shown in the following codes.

Code snippet for exporting single model

```
BEGIN
DBMS_DATA_MINING.EXPORT_MODEL ('CLAS_DT_1_14.dmp','dmdir','name =''CLAS_
DT_1_14''');
END;
```

Code snippet for exporting multiple models

```
begin
DBMS_DATA_MINING.EXPORT_MODEL ( 'multi_model_out', 'dmdir', 'name in (''CLAS_
SVM_1_14'', ''CLAS_GLM_1_14'')');
end;
```

After the procedure is executed successfully, the dump files (files with DMP extension) and their logs show up in the specified directory (see Figure 8-13).

Name	Date modified	Туре
CLAS_DT_1_1401.DMP	02/08/2016 2:39 AM	DMP File
DMUSER_EXP_23	02/08/2016 2:39 AM	Text Document
DMUSER_EXP_36	02/08/2016 2:42 AM	Text Document
MULTI_MODEL_OUT01.DMP	02/08/2016 2:42 AM	DMP File

Figure 8-13. Export dump files

IMPORT_MODEL

The dump file can be used to import the models of another schema or database using the IMPORT_MODEL procedure of the DBMS_DATA_MINING package. Table 8-3 lists the parameters that are used to control the import operations.

Table 8-3. Import Model Parameters

Parameters	Description
filename	Name of the dump file from which the model(s) are to be imported; the file should have been created by the export functionality.
directory	Name of the directory where the file is located.
model_filter	An optional parameter; when there are multiple models in a single dump file, you can use this option to filter models to be created in an environment.
operation	An optional parameter; there are two options to select: IMPORT and SQL_FILE. IMPORT is the default option. It is the parameter that instructs the API to import the model into the environment. The SQL_FILE option creates SQL DDL for the model creation to a text file.
remote_link	An optional parameter; it is used to specify the remote database link.
jobname	An optional parameter; you can use this option to specify the job name for the import activity of your choice. This parameter overrides the system generated name of the import job.

(continued)

Table 8-3. (continued)

Parameters	Description
schema_remap	An optional parameter; it can be used to import the model into a different schema. For example, we developed a model using DMUSER and want to migrate it to a production schema PMUSER. You can specify this parameter as "DMUSER:PMUSER," which means the model created by DMUSER is to be imported to PMUSER schema.
tablespace_ remap	An optional parameter; it can be used to import the model into a different tablespace. By default, models are exported and imported within the same tablespace. As in the case of schema_remap, here you can specify values as "TABS01:TABS02," which means the table space TABS01 has to be changed to TABS02 while importing.

You can use the following code snippet to import the models into a dump file.

```
BEGIN
DBMS_DATA_MINING.IMPORT_MODEL('CLAS_DT_1_1401.dmp', 'dmdir');
END;
```

Renaming Models

Sometimes it is needed to rename the model as per business standards prior moving to the production instance. You can do so by using the RENAME_MODEL procedure of the DBMS_DATA_MINING package.

Code Snippet

```
DBMS_DATA_MINING.RENAME_MODEL('DEMO_CLASS_DT,'CUST_CHURN_MODEL');
```

Drop Models

You can use the DROP_MODEL procedure of the DBMS_DATA_MINING package to drop a model. It is necessary in cases where we want to drop an existing model and import the new model. Let's say, we already have an existing customer churn model up and running in the production instance. We have created a new model with a lot more features and logic. If we want to have only one customer churn model with the same model name, we need to drop the existing one and import the new model that we prepared.

Code Snippet

```
DBMS_DATA_MINING.DROP_MODEL('CHURN_MODEL');
```

Predictive Model Markup Language (PMML)

PMML is an XML-based format to exchange predictive models across platforms, which is developed by the Data Mining Group. It defines the de facto standard for defining predictive models that helps to move the models between different tools and applications without the need to recreate the model. A model can be developed in one application and can be used in another application using PMML. The latest PMML version is 4.3.

PMML follows a structure, a set of predefined elements, and attributes of all the elements needed to define a predictive model. The following is a high-level overview of a PMML structure:

- 1. *Header*: It contains general information regarding a model such as version, timestamp, and environment information
- 2. *Data dictionary*: It has the information related to the data types of the field attributes (predictors and target) used in the model.
- 3. *Data transformation*: This section has the details related to the data transformations such as data normalization, mapping, and discretization.
- 4. *Model*: This section has the model details such as the model name, the name of the target variable in the case of regression and classification models, the list of predictors, and the coefficients.

The PMML code for different algorithms can have more or less information, but the structure is somewhat similar to that I discussed in the preceding section.

Figure 8-14. Sample linear regression PMML file

Importing and Exporting PMML models into Oracle Advanced Analytics

Oracle Advanced Analytics supports PMML version 3.1. We can only import PMML code for regression algorithms into Oracle Advanced Analytics. Also, the PMML export option from Oracle Advanced Analytics is limited only to decision trees.

We can use the IMPORT_MODEL option of the DBMS_DATA_MINING package to import PMML code into data mining tables. The following example imports a sample linear regression PMML code to the Oracle database (see also Figure 8-14).

Sample PMML import code snippet

END;

The get_model_details_xml of dbms_data_mining can be used to export PMML for decision tree models from Oracle Advanced Analytics (see Figure 8-15).

Sample code snippet to generate PMML for decision tree

```
SELECT dbms_data_mining.get_model_details_xml('demo_class_dt') AS DT_
DETAILS from dual;
```

You can save the PMML file in your disk and can export this model to other data science tools such as R or SAS.

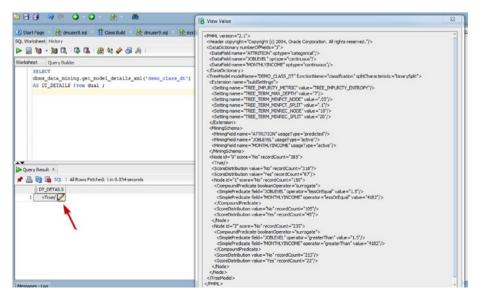


Figure 8-15. PMML file for decision trees

Summary

My intention in this chapter was to walk you through the different migration and deployment methods that can be leveraged in Oracle Advanced Analytics. You learned different techniques that are available in Oracle Advanced Analytics to move the data science models between environments quickly and efficiently. You also learned about the PMML technique to import and export the models that are created using different tools such as SAS, R, and KNIME (Konstanz Information Miner) to and from the Oracle Advanced Analytics platform.

This brings an end to our discussion on the two powerful underlying technologies of Oracle Advanced Analytics technology stack: Oracle Data Miner and Oracle R Enterprise. As the world is changing fast, so do the technologies. Oracle is continuously improving these products, and new features are added to the technology stack in every release. To keep yourself updated on these technologies, you can follow the Advanced Analytics section in the Oracle Blog as well as the Oracle Technology Network.

Index

🛛 A, B

ADP. See Automatic data preparation (ADP) Anomaly detection one-class SVM, 248 Oracle Advanced Analytics, 248-250 rule-based/machine-learning-based detection systems, 247 Apriori algorithm, 120-122 Association rules affinity analysis, 117 algorithm settings, 123 apriori algorithm, 120-122 model settings, 124 Oracle R Enterprise, 127, 129-130 SQL and PLSQL, 124-126 SQL Developer algorithm settings, 132 data source, 130 Edit Assoc Build, 131 execution, 133 Model Settings, 132 statistical measurement, 122 Association rules confidence, 119 K-item sets, 119 support, 119 transaction, 118 Automatic data preparation (ADP), 12, 81

C

Classification methods applications, 189 customerchurn (*see* Customer churn prediction)

decision (see Decision trees) logistic regression, 190-192 multinomial logistic regression, 190 Naïve Bayes, 193-199, 201 Classifiers accuracy, 202 AUC, 203 confusion matrix, 201-202 lift. 203 misclassification rate, 202 PLSOL APIs, 219, 221 precision, 202 ROC curve, 203 specificity, 202 Clustering methods application, 75 Clust Build node, 91 define data source, 90 density-based technique, 76 grid-based method, 77 hierarchical method, 76 k-means algorithm ADP, 81 cluster assignment, 80 evaluation metrics, 81 history and geography scores, 78 initial centroids, 79 parameters, 81-82 ODM workflow, 90 ORE, 87-89 partition-based methods, 77 PLSOL, 83-86 SOL, 83-86 XXCUST_IRIS_DATA_V, 91 CRM. See Customer relationship management (CRM)

Customer churn prediction Compare Test Results, 229 CRM, 222 data modeling, 227-229 data preparation, 223-227 DT and GLM model, target values, 231 Edit Create Table/View Node, 235 lift chart and values, 233 performance measurement, 230-231 query result, 236-237 viral marketing, 222 Customer relationship management (CRM), 93-94, 222 Customer segmentation CRM. 93-94 batch process, 115 database table, 110, 112-114 need-based segmentation data modelling, 106-108 data preparation, 100-104, 106 promotional activity, 93 real-time assignment, 114-115 **RFM** segmentation data modelling, 97-99 data preparation, 95-97 Sant Enterprises, 109-110

D

Data dictionary, 59, 73 ODM, 59 **ORE**, 73 Data mining models SQL Developer Deploy Options, 273-274 DROP_MODEL, 280 EXPORT_MODEL, 278-279 IMPORT MODEL, 279-280 RENAME_MODEL, 280 Script Directory, 276 Target Database, 274-275 types of scripts, 276 DBMS_PREDICTIVE_ANALYTICS, 9, 14-15, 255 DBMS_STATS_FUNC package, 18-21 Decision trees components, 203

entropy, 204–205 information gain, 205–206 leaf nodes, 204 Oracle R Enterprise, 210–211 parameters, 207 pruning methods, 206–207 recursive partitioning method, 204 SQL and PLSQL, 208–210 SVM (*see* Support vector machines (SVM)) Density-based technique, 76 DROP_MODEL procedure, 280

E, F

EXPLAIN function, 255-256

G

GLM regression link function, 161 Oracle R Enterprise, 166-168 SOL and PLSOL, 162-163, 165-166 SQL Developer algorithm settings, 171 Build node, 169 Data Usage, 170 DEMO GLMR AIRLINE DATA, 168 model coefficients, 172 performance, 174 quality estimates, 172 statistical measurement, 173 supervised learning algorithm, 174-175 variance function, 161 Grid-based method, 77

🔳 H, I, J, K

Hadoop Distributed File System (HDFS), 15 Hidden layer, 241–242 Hierarchical method, 76

I L

Linear regression, 154 Logistic regression, 190–192

M

Machine learning business analytics, 5–6 definition, 4 illustration, 5 supervised, 5 Market basket analysis Build_Assoc_Model, 139–140 data modeling, 136–137 data preparation, 136 execution, 143–145 high-level technical architecture, 138 rqTableEval Interface Function, 141–143 Multiple linear regression, 152

N

Naïve Bayes conditional probabilities, 193 data set, 193 discount factors, 194 frequency table, 194 Oracle R Enterprise, 198–201 SQL and PLSQL, 195–198 Neural networks classification, 240 hidden layer, 241–242 input and ouput layers, 240 Oracle Advanced Analytics, 244–247 parameters, 242–243

0

ODM workflow export, 267, 269–270 import, 270, 272 OLS. *See* Ordinary least squares (OLS) Oracle Advanced Analytics advantages, 6–7 analytical SQL and PLSQL packages, 8 database capabilities, 1 data science business understanding, 3 CRISP-DM, 2 data mining, 2

data preparation. 4 data understanding, 3 deployment, 4 evaluation, 4 modeling, 4 machinelearning (see Machine learning) Oracle DataMiner (see Oracle Data Miner) ORE (see Oracle R Enterprise (ORE)) stack, 8 statistical analytics tools, 1 Oracle Data Miner (ODM) architecture, 9 data dictionary, 59 DBMS DATA MINING creating, testing and applying models, 13 DBMS_DATA_MINING_ TRANSFORMATION, data preprocessing, 10-13 DBMS_PREDICTIVE_ANALYTICS, 14 description. 8 installation configuration. 36 dmuser connection, 49-53 DMUSER connection, 46 New/Select Database Connection. 42 - 43**Respository Installation Settings**, 47 - 48Select Connection, 45 System Privilages, 39 SYS user and password, 47 user option, creation, 37-38 packages, 9 R technologies, 15 SQL Developer components panel, 55 data section, 56 evaluate and apply, 58 models section, 58 predictive query, 58 text section. 57 transforms section, 57 workflow jobs, 55 Oracle R distribution, 15

INDEX

Oracle R Enterprise (ORE) advantages, 17 architecture, 16 distribution. 61. 63-64 client Installation execution, 71-73 R GUI. 68 supporting packages, 70-71 clustering methods, 87-89 data dictionary, 73 description, 15 distribution, 60-62, 65 functions, 17 **OTN, 59** packages, 17 server installation. 65-67 Server Support Matrix, 60 Oracle Technology Network (OTN), 59-60 Ordinary least squares (OLS) linear regression, 155-156 normal O-O plot, 157-158 regression techniques, 153 residuals vs. fitted plot, 157 vs. leverage plot, 158-159 SSE. 152 OTN. See Oracle Technology Network (OTN)

P

Partition-based methods, 77 PLSQL APIs, 219, 221 PMML. See Predictive model markup language (PMML) Predictive analytics Oracle Advanced Analytics, 251 SQL Developer GUI component panel, 251-252 data source, 253 DBMS_PREDICTIVE_ ANALYTICS, 255 edit option, 253-255 EXPLAIN function. 255-256 PREDICT method, 256-258 PROFILE method, 258-259 Predictive model markup language (PMML)

Oracle Advanced Analytics, 282 structure, 281 PREDICT method, 256–258 Product recommendation engine content-based/CF techniques, 260 decision-making processes, 259 e-commerce space, 259 Oracle Advanced Analytics, 260–262 PROFILE method, 258–259

Q

Quotaquota for DMUSER, 40 QuotaSQL, 41

R

Random forest Oracle Advanced Analytics, 263-264 types of ensemble learning methods. 262 Regression analysis covariance and correlation measurement. 149-151 forecasting (see Sales forecasting) GLM, 160-161 machine learning algorithms, 147 multiple linear regression, 152 OLS (see Ordinary least squares (OLS))ridge (see Ridge regression) scatterplot, 149 RENAME_MODEL procedure, 280 **RFM** segmentation data modelling, 97-99 data preparation, 95-97 **Ridge regression** GLM model, 161-162 ROracle, 15

S, T, U, V, W, X, Y, Z

Sales forecasting data preparation algorithm settings, 181 coefficients, 182 data üsuage, 180 Define Filter settings, 178 Edit Filter Columns, 179 Edit Output Data Column, 186 Edit Regression Build Node, 180 execution, 187 Filter Columns, 177 Quality Estimates, 181 Regress Build node, 185 SQL Query Node Editor, 184 estimate of Sales, 175 Sant Enterprises, 94, 95, 109–110, 114 SQL functions aggregate, 22–25 bucketing, 28–29 LAG, 30 LEAD, 30–31 pivot, 31 ranking, 25–26 statistical, 26–27 unpivot, 32 window, 29–30 SSE. *See* Sum of squared errors (SSE) Sum of squared errors (SSE), 152 Support vector machines (SVM) hyperplane, 211 kernel function, 214 Oracle R Enterprise, 218 parameters, 214–215 SQL and PLSQL, 215–217